The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 10
Back to Result List

Anpassung von Alignments an Veränderungen in Ontologien

  • Um Wissen in einer Form abzulegen, in der es automatisiert verarbeitet werden kann, werden unter anderem Ontologien verwendet. Ontologien erlauben über einen als Inferenz bezeichneten Prozess die Ableitung neuen Wissens. Bei inhaltlichen Überschneidungen werden Ontologien über Ontologie-Alignments miteinander verbunden, die Entitäten aus den verschiedenen Ontologien in Beziehung zueinander setzen. Üblicherweise werden diese Alignments als Mengen von Äquivalenzen formuliert, die beschreiben, welche Konzepte aus einer Ontologie Konzepten aus einer anderen Ontologie entsprechen. Ebenfalls verbreitet sind Ober- und Unterklassenbeziehungen in Alignments. Diese Ontologie-Alignments werden zum Beispiel in der Biomedizin in Forschungsdatenbanken verwendet, da durch Alignments Informationen aus verschiedenen Bereichen zusammengeführt werden können. Der manuelle Aufwand, um große Ontologien und Alignments zu erstellen, ist sehr hoch. Dementsprechend wäre es wünschenswert, bei einer Veränderung von Ontologien nicht wieder von vorne beginnen und eine neue Ontologie erstellen zu müssen und möglichst viel aus der veränderten Ontologie und den die Ontologie betreffenden Alignments wiederverwenden zu können. Daher sollten möglichst automatisierte Verfahren verwendet werden. Diese Arbeit untersucht vier Ansätze, um die Anpassung von Alignments an Veränderungen in Ontologien zu automatisieren. Der erste Ansatz bezieht Inferenzen in den Prozess zur Vorhersage von Alignment-Änderungen mit ein. Dazu werden die Inferenzen vor und nach der Änderung der Ontologien berechnet und auf Basis der Unterschiede mit einem regelbasierten Algorithmus bestimmt, wie sich das Alignment ändern soll. Der zweite Ansatz, wie auch die weiteren Ansätze, hat nicht zum Ziel das Alignment direkt anzupassen. Stattdessen soll vorhergesagt werden, welche Teile des Alignments angepasst werden müssen. Dazu werden die Ontologien und das Alignment als Wissensgraph-Embeddings repräsentiert. Diese Embeddings bilden Knoten aus den Ontologien in einen Raum mit 300-1000 Dimensionen so ab, dass in dem Raum auch die Beziehungen zwischen den Entitäten der Ontologien repräsentiert werden können. Diese Embeddings werden dann verwendet, um verschiedene Klassifikationsalgorithmen zu trainieren. Auf diese Weise wird vorhergesagt, welche Teile des Alignments sich verändern werden. Der dritte Ansatz verbindet Embeddings mit einem Veränderungsmodell. Das Veränderungsmodell kategorisiert die an den Ontologien vorgenommenen Veränderungen. Auf diese Kategorisierung und das Embedding werden dann Klassifikationsalgorithmen angewandt. Der vierte Ansatz verwendet eine speziell auf Wissensgraphen ausgerichtete Architektur für neuronale Netze, sogenannte Graph Convolutional Networks, um Veränderungen an Alignments vorher zu sagen. Diese Ansätze werden auf ihre jeweiligen Vor- und Nachteile untersucht. Dazu werden die Verfahren an zwei Anwendungsfällen untersucht. Der Ansatz zur regelbasierten Einbeziehung von Inferenzen wird anhand eines Anwendungsbeispiels aus dem Bereich der Interweaving Systems betrachtet. In dem Beispiel wird eine allgemeine Methode für Interweaving Systems angewandt um das Selbstmanagement von Ampelsteuerungen zu ermöglichen. Die auf maschinellem Lernen aufbauenden Ansätze werden auf einem Auszug aus der biomedizinischen Forschungsdatenbank UMLS evaluiert. Dabei konnte festgestellt werden, dass die betrachteten Ansätze grundsätzlich zur Anpassung von Alignments an Ontologie-Veränderungen eingesetzt werden können. Der Ansatz zur regelbasierten Einbeziehung von Inferenzen kann dabei vor allem auf sehr kleinen Datensätzen eingesetzt werden, bei denen alle Gesetzmäßigkeiten der Veränderungen grundsätzlich bekannt sind. Diese Anwendbarkeit ergibt sich aus dem Entwurf der Problemstellung für den ersten Ansatz. Die auf maschinellem Lernen aufbauenden Ansätze eignen sich besonders für große Datensätze und bieten den Vorteil, dass auch ohne ein vollständiges Verständnis des Veränderungsprozesses Vorhersagen getroffen werden können. Unter den Ansätzen, die maschinelles Lernen einsetzen, zeigte die Einbeziehung von Veränderungsmodellen keine Vorteile gegenüber den anderen Ansätzen. Auf einem etwas kleineren Datensatz waren die Ergebnisse des Embedding-basierten Ansatzes und der Relational Graph Convolutional Networks vergleichbar, während auf einem größeren Datensatz die Graph Convolutional Networks etwas bessere Ergebnisse erreichen konnten. Weitere Ergebnisse dieser Arbeit stellen eine Formalisierung der Problemstellung der Anpassung von Ontologie-Alignments an Veränderungen sowie eine formale Darstellung der Ansätze dar. Ein weiterer Beitrag der Arbeit ist die Vorstellung eines Anwendungsfalls aus dem Bereich der Interweaving Systems für Ontologie-Alignments. Außerdem wurde das Problem der Anpassung von Alignments an Veränderungen so formuliert, dass es mithilfe von maschinellem Lernen betrachtet werden kann.

Download full text files

Export metadata

Metadaten
Author:Matthias Jurisch
URN:urn:nbn:de:hebis:30:3-618044
DOI:https://doi.org/10.21248/gups.61804
Place of publication:Frankfurt am Main
Referee:Uwe BrinkschulteORCiD, Bodo Igler
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2021/07/18
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/07/02
Release Date:2021/10/05
Page Number:177
HeBIS-PPN:486007006
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht