Der Einfluß von Charge-Transfer-Wechselwirkungen auf die Bildung von O2(1Σg+) [O 2 (1 Sigma + g)], O2(1Δg) [O 2 (1 Delta g)] und O2(3Σg-) [O 2 (3 Sigma - g)] bei der Löschung von ππ*- [pi-pi*-] und nπ*-angeregten [n-pi*-angeregten] Triplettzuständen durch O2
- In der vorliegenden Arbeit wurde der Einfluß der Variation des Oxidationspotentials und der Elektronenkonfiguration ( * gegen n *) auf die zur Löschung von angeregten Triplettzuständen durch O2 führenden Prozesse untersucht. Bei ausreichender Triplettenergie werden neben dem Grundzustand des ursprünglich angeregten Sensibilisators in Konkurrenz O2(1 g ) und O2(1 g) Singulettsauerstoff sowie O2(3 g -) Grundzustandssauerstoff gebildet. Frühere Untersuchungen in diesem Arbeitskreis hatten gezeigt, daß es für * Triplettzustände zwei Desaktivierungskanäle gibt, die beide zu O2(1 g ), O2(1 g) und O2(3 g -) führen. Der eine geht von den bei der Löschung zunächst gebildeten 1,3(T1 3 ) Encounter Komplexen ohne Charge Transfer Stabilisierung aus (nCT). Diese befinden sich in einem vollständig eingestellten spinstatistischen Gleichgewicht, aus dem durch innere Konversion in niedrigere Komplexzustände die Desaktivierung erfolgt. Ein gemeinsames Energielückengesetzt f( E) und damit letztlich die Triplettenergie des Sensibilisators bestimmt die Größe der Geschwindigkeitskonstanten der zu O2(1 g ), O2(1 g) und O2(3 g -) führenden Prozesse in diesem nCT Kanal. Für Sensibilisatoren mit hohem Oxidationspotential und vernachlässigbaren Charge Transfer Wechselwirkungen ist dies der einzige Desaktivierungsprozeß. Mit zunehmender Charge Transfer Wechselwirkung, also mit abnehmendem Oxidationspotential und/oder zunehmender Triplettenergie, wird ein zweiter Desaktivierungskanal geöffnet, der über 1,3(T1 3 ) Komplexe mit Charge Transfer Stabilisierung (pCT) also über Exciplexe führt. Die Exciplexbildung ist der geschwindigkeitsbestimmende Schritt im pCT Kanal. Zur Verbreitung der Datenbasis den T1( *) Sensibilisatoren wurde in dieser Arbeit eine Reihe von mit elektronenziehenden bzw. elektronenschiebenden Gruppen substituierten Fluorenen studiert, bei denen im wesentlichen nur das Oxidationspotential variiert, während die Triplettenergien weitgehend konstant bleiben. Die mit den Fluorenen erhaltener Ergebnisse bestätigen das bisher erarbeitet Zweikanal-Desaktivierungsmodell. Insbesondere wird auch das spinstatistische Gewicht von 1:3 für die Bildung von Singulett zu Triplettsauerstoff im Exciplex Kanal gefunden, das nur mit einem relativ langsamen 1(T1 3 ) 3(T1 3 ) isc Gleichgewicht konsistent ist. Dieses Ergebnis widerspricht der früheren Annahme, wonach ein effizientes isc Gleichgewicht nur zwischen 1,3(T1 3 ) Exciplexen, nicht aber zwischen 1,3(T1 3 ) Encounter Komplexen existieren soll. In der vorliegenden Arbeit wird ein Modell für die 1(T1 3 ) 3(T1 3 ) angeregten Komplexe vorgeschlagen, das in einfacher Weise erklärt, warum das isc zwischen Encounter Komplexen von Sensibilisator und O2 schneller ist, als das zwischen den entsprechenden Exciplexen. Die weitere Analyse der Fluoren Daten zeigt, daß neben dem Oxidationspotential und der Triplettenergie des Sensibilisators auch dessen Struktur die Geschwindigkeitskonstanten beeinflussen kann, allerdings weitaus schwächer als die beiden ersten Einflußgrößen. Mit den Messungen der Geschwindigkeitskonstanten kT 1 , kT 1 und für kT 3 der zu O2(1 g ), O2(1 g) und O2(3 g -) führenden Prozesse für die unterschiedlich substituierten Benzophenonderivate wurde erstmals eine quantitative Untersuchung der Löschung von n * angeregten Triplettzuständen durch O2 durchgeführt. Obwohl für die Benzophenone eine stärkere Variation des Oxidationspotentials bei nahezu konstanter Triplettenergie erreicht werden konnte, wurde im Vergleich zu den * Triplettsensibilisatoren eine wesentlich schwächere Variation von kT 1 , kT 1 und für kT 3 beobachtet. Gleichzeitig liegen die Werte von kT 1 , kT 1 und für kT 3 der Benzophenone mit vernachlässigbarer Charge Transfer Wechselwirkung weit von der für * Triplettsensibilisatoren gefundenen Energielückenbeziehung f( E). Offenbar gilt für n * Triplettsensibilisatoren eine andere Energielückenbeziehung f( E), die viel schwächer von E abhängt. Es konnte gezeigt werden, daß die schwächere Überschußenergieabhängigkeit mit der unterschiedlichen Struktur der 1,3(T1.3 ) Komplexe zusammenhängt. Für 1,3(T1(n *) 3 ) ist eine Vierzentren Struktur, bei der die beiden Sauerstoffatome des O2 Moleküls parallel und benachbart zu den beiden Atomen der angeregten Carbonyl Gruppe liegen, sehr wahrscheinlich. Bei der Desaktivierung der Carbonyleinheit ändern sich die Bindungslängen der Vierzentrenstruktur stark, was einem Übergang zwischen versetzten Potentialkurven mit schwacher Energieabhängigkeit der Franck-Condon Faktoren entspricht. Für 1,3(T1( *) 3 ) Komplexe ist eine supra-supra Struktur anzunehmen, bei der die beiden Sauerstoffatome des O2 Moleküls mit gegenüberliegenden Kohlenstoffatomen eines angeregten aromatischen Rings wechselwirken. Bei der Desaktivierung des aromatischen Rings ändern sich die Bindungslängen nur wenig, so daß man von einem Übergang zwischen übereinander liegenden Potentialkurven mit stärkerer Energieabhängigkeit der Franck-Condon Faktoren sprechen kann. Dies ist der eigentliche Grund für die verschiedenen Energielückenbeziehungen f( E) und f( E) bei der Löschung von * und n * Triplettsensibilsatoren durch O2. Die Variation des Oxidationspotentials und damit der Stärke der Charge Transfer Wechselwirkungen in den 1,3(T1 3 ) Komplexen wird durch unterschiedliche Substitution von aromatischen Ringen mit elektronenziehenden oder elektronenschiebenden Gruppen bewirkt. Da die aromatischen Ringe bei den n * Triplettsensibilisatoren im Gegensatz zu den * Triplettsensibilisatoren nicht Bestandteil des elektronisch angeregten Zentrum sind, fallen die Charge Transfer Effekte bei den n * Triplettsensibilisatoren deutlich schwächer aus als bei den * Triplettsensibilisatoren. Damit konnte in der vorliegende Arbeit erstmals eine konsistente Begründung für das unterschiedliche Verhalten von n * und * Triplettsensibilisatoren bei der Löschung durch O2 gegeben werden.