Kohärenter Hall-Effekt in einem Halbleiterübergitter

  • Im Rahmen der vorliegenden Arbeit wird experimentell ein oszillatorischer Hall-Strom nachgewiesen, der sich in einem impulsiv optisch angeregten Halbleiterühergitter ausbildet, sobald sich dieses in einem statischen magnetischen Feld und einem dazu senkrechten statischen elektrischen Feld befindet. Das Übergitter dient dabei als Modellsystem für ein dreidimensionales Material und ermöglicht die Beobachtung eines unter dem Begriff "kohärenter Hall-Effekt" zusammengefassten Bewegungsverhaltens der Ladungsträger, das durch eine charakteristische Frequenzabhängigkeit des oszillatorischen Hall-Stromes von den äußeren Feldern gekennzeichnet ist. Dabei wird in der vorliegenden Arbeit das spezielle Bewegungsverhalten mit Hilfe eines semiklassischen Modells hergeleitet und diskutiert. Die zentrale Aussage des Modells ist die Existenz zweier scharf voneinander abgegrenzter Bewegungsregimes, (die sich durch eine entgegengesetzte Feldabhängigkeit der Oszillationsfrequenz auszeichnen. Am Übergang zwischen diesen beiden Regimes werden alle Oszillationen aufgrund einer gegen Null gehenden Frequenz unterdriickt. Dabei lässt sich im Gegensatz zum Ortsraum der Übergang zwischen den beiden Bewegungsregimes im k-Raum einfach klarmachen. Er wird durch die Überwindung der Mini-Brillouin-Zonengrenze durch das Ladungsträgerwellenpaket markiert und bestimmt, ob die Bewegungsform Bloch-oszillationsartig oder zyklotronartig ist. Der experimentelle Nachweis des kohärenten Hall-Effektes wird durch die Anwendung einer berührungsfreien optoelektronischen Technik ermöglicht, mit deren Hilfe das emittierte elektrische Feld der kohärenten, transienten Hall-Ströme zeitaufgelöst detektiert werden kann. Da diese Technik die Messung frei propagierender Strahlung im THz-Frequenzbereich gestattet, bezeichnet man die Methode als THiz-Emissionsspektroskopie. Im Gegensatz zum klassischen Hall-Effekt stellt sich der kohärente Hall-Effekt als Manifestation der Wellennatur (der Ladungsträger dar, die sich im Festkörper durch eine periodische Dispersionsrelation äußert,. Erst. die kohärente Präparation eines Ladungsträgerensembles ermöglicht dabei (die Beobachtung der mikroskopischen Vorgänge in Form einer transienten Bewegung, die, bedingt durch ultraschnelle Streuprozesse, auf kurzen Zeitskalen von etwa 1 ps dephasiert. Die Kohärenz wird dem System dabei mittels eines kurzen Laserpulses von etwa 100 fs Dauer aufgeprägt, mit dessen Hilfe die Ladungsträger im Übergitter optisch generiert werden. Diese Vorgehensweise ist mit der experimentellen Untersuchung von Bloch-Oszillationen vergleichbar, die ebenfalls erst durch die kohärente Präparation der Ladungsträger messbar werden. Die inkohärente Bewegung der Ladungsträger in einem Kristall unter dem Einfluss eines konstanten elektrischen Feldes wird bekanntermaßen durch das Ohmsche Gesetz beschrieben analog etwa der Beschreibung der IIall-Spannung beim klassischen Hall-Effekt.. Im Rahmen der vorliegenden Arbeit gelingt der erste Nachweis des beschriebenen kohärenten Effektes und damit, der Beleg, dass es auch in dreidimensionalen Halbleitern, hier repräsentiert durch ein Übergitter, möglich ist, kohärente Signaturen des Hall-Effektes zu beobachteten. Im Gegensatz zu speziellen zweidimensionalen Strukturen, wie sie beim integralen und fraktionalen Quanten-Hall-Effekt verwendet werden, ist dies hier aufgrund des größeren Zustandsraumes und der dadurch bedeutenderen Dephasierungsprozesse nur auf sehr kurzen Zeitskalen realisierbar.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tobias BauerGND
URN:urn:nbn:de:hebis:30-0000002089
Referee:Hartmut RoskosORCiDGND, Rainer J. JelittoGND
Document Type:Doctoral Thesis
Language:German
Year of Completion:2002
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/10/28
Release Date:2003/05/22
GND Keyword:Galliumarsenid; Aluminiumarsenid; Übergitter; Hall-Effekt
Page Number:158
HeBIS-PPN:108793699
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht