Untersuchungen zum technischen und teilchenoptischen Design kompakter Speicherringe für Ionen

  • Die vorliegende Arbeit befasst sich mit der Berechnung und dem Bau von elektrostatischen Speicherringen. Eine solche Maschine kann als eine Kreuzung zwischen elektrostatischen Fallen und "klassischen" magnetischen Ringen angesehen werden. Kompakte Bauform, gute Zugänglichkeit der Elemente und vergleichsweise niedrigen Kosten werden mit hoher Flexibilität in Bezug auf mögliche Experimente kombiniert. Im 1. Kapitel werden zunächst die Unterschiede der Bewegung von Ionen in elektrostatischen und magnetischen Speicherringen untersucht. Die Massenunabhängigkeit der Teilchenbewegung bei gegebener Energie und Ladung in rein elektrostatischen Feldern erlaubt es, unterschiedlichste Ionen im Prinzip in direkter Folge in einen elektrostatischen Ring einzuschießen, ohne dass die Felder der optischen Elemente verändern werden müssen. Die Felder in den für einen Speicherring notwendigen Strahlführungskomponenten werden berechnet, die zugehörigen Bewegungsgleichungen aufgestellt und in linearer Näherung gelöst. Dabei werden zunächst die Bahnen einzelner Teilchen untersucht und dann das Strahlverhalten insgesamt durch Übergang auf einen Matrizenformalismus beschrieben. Die aus dieser Darstellung resultierenden Trajektorien stellen eine starke Vereinfachung dar. Die Untersuchung der realen Teilchenbewegung mit Einfluss von Randfeldern, Positionierungsfehlern und die Berechnung der dreidimensionalen Feldverteilung ist Gegenstand des 2. Kapitels. Ein kritischer Punkt bei der Bewegung von Teilchen in Ringbeschleunigern sind durch Feldfehler induzierten Resonanzerscheinungen. Zur Diskussion der verschiedenen möglichen Resonanzen werden im 3. Kapitel die Effekte durch zusätzliche Dipol- und Quadrupolfelder analysiert, dargestellt und schließlich anhand eines Resonanzdiagramms erläutert. In den geplanten Speicherring werden Ionen in einem einzigen Bunch, mit einer Ausdehnung von rund dem halben Ringumfang, injiziert. Ihre Lebensdauer hängt wesentlich von dem erzielbaren Vakuumenddruck ab. Die vorgesehenen Getterpumpen weisen eine sehr hohe Pumpleistung für die meisten Gase auf. Ihre Wirkungsweise wird im 4. Kapitel beschrieben und praktische Aspekte ihrer Handhabung diskutiert. Für den Betrieb eines Speicherrings ist es notwendig, die Parameter des umlaufenden Strahls zu jeder Zeit zu kennen und gegebenenfalls modifizieren zu können. Zentrales Element des Kontroll- und Diagnosesystems sind Strahlpositionsmonitore. In elektrostatischen Pickup-Elektroden induziert der Strahl beim Durchgang Spannungen über die eine Positionsbestimmung möglich ist. Die Wirkungsweise dieser Sonden wird in der zweiten Hälfte des 4. Kapitels diskutiert und Methoden zur Signalaufbereitung und -analyse beschrieben. Die allgemeinen Ergebnisse der Überlegungen zu elektrostatischen Speicherringen aus den ersten Kapiteln werden schließlich auf spezielle Fälle übertragen. Im Rahmen dieser Arbeit wurden verschiedene Entwürfe für einen elektrostatischen Speicherring angefertigt und ein Viertelringsegment zu Testzwecken entworfen und aufgebaut. Die Ergebnisse sind Inhalt des abschließenden 5. Kapitels. Mit den in dieser Arbeit vorgestellten Methoden ist es möglich, elektrostatische Speicherringe detailliert zu berechnen und an die experimentellen Rahmenbedingungen anzupassen. Sämtliche Rechnungen wurden im Hinblick auf den geplanten Bau eines Rings für Teilchen mit Energien bis 50 keV durchgeführt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Carsten Peter Welsch
URN:urn:nbn:de:hebis:30-0000002047
Referee:Alwin SchemppGND, Horst Schmidt-BöckingGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/19
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/11/27
Release Date:2003/05/19
GND Keyword:Ionenstrahl; Speicherring; Teilchenoptik
HeBIS-PPN:108769658
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht