Functional and structural characterization of the recombinantly expressed glutamate receptor-B ion channel
- Diese Zusammenfassung ist in zwei Abschnitte gegliedert. Im Abschnitt 6.1. wird die physiologische Bedeutung der Glutamatrezeptoren (GluR) und ihr biologischer Hintergrund kurz erklärt. Am Ende dieses Abschnitts wird der Stand der Strukturanalyse des GluR-B Ionenkanals zu Beginn des Projektes zusammengefasst. Im nachfolgenden Abschnitt 6.2. sind die wesentlichen Ergebnisse der hier vorgelegten Arbeit zusammengefasst. 6.1. Die Bedeutung von Glutamatrezeptoren - Stand der Strukturanalyse zum Beginn dieser Arbeit Die Kommunikation zwischen Nervenzellen erfolgt vorwiegend an hochspezialisierten Kontaktstellen den chemischen Synapsen. Der enge Raum zwischen sendender und empfangender Nervenzelle wird auch als synaptischer Spalt bezeichnet. Der Prozess der synaptischen Übertragung beruht auf der präsynaptischen Freisetzung von chemischen Botenstoffen, sogenannten Neurotransmittern in den synaptischen Spalt. Die Aminosäure L- Glutamat (Glu) ist der wichtigste erregende Neurotransmitter im menschlichen Gehirn und Rückenmark. Dementsprechend bedeutend ist die Rolle der ionotropen Glutamatrezeptoren (iGluRs), die sie bei der elektrochemischen Erregungsübertragung am synaptischen Spalt spielen (Seeburg, 1993), (Hollmann and Heinemann, 1994), (Dingledine et al., 1999). Die Freisetzung von Neurotransmittern wird durch ein elektrisches Signal (Aktionspotential) ausgelöst, das sich entlang der Nervenfaser, dem Axon, bis zur Nervenendigung, der Synapse, fortpflanzt. Nach der Freisetzung diffundieren die Neurotransmitter durch den synaptischen Spalt und binden an sogenannte Rezeptoren. Ionotrope Glutamatrezeptoren sind Ionenkanäle, die in die Membran der nachgeschalteten (postsynaptischen) Nervenzelle eingebaut sind. Sie zählen deshalb zu den Membranproteinen. Als ligandgesteuerte kationenselektive Ionenkanäle machen Glutamatrezeptoren (GluRs) die postsynaptische Membran nach Aktivierung durch Ligandbindung für bestimmte Kationen durchlässig. Der Einstrom von Ionen bewirkt eine Änderung des Membranpotentials. Die Stärke der synaptischen Übertragung ist lebenslang modulierbar; die sogennante synaptische Plastizität wird als eine entscheidende Grundlage für die Erklärung von Lernen und Gedächtnis angesehen. Drei synthetische Agonisten aktivieren die GluRs selektiv und wurden deshalb für die Klassifizierung der ionotropen Glutamatrezeptoren herangezogen. Bei den Agonisten handelt es sich um -Amino-3-hydroxy-5-methyl-4-isoxazol-4-propionat (AMPA), Kainat and N- Methyl-D-Aspartat (NMDA). Die ersten beiden Subtypen werden auch als non-NMDA- Rezeptoren zusammengefasst. Die Aktivierung und Desensitivierung der non-NMDA Rezeptoren ist schneller als die der NMDA-Rezeptoren. Aus molekularbiologischer Sicht (siehe Kapitel 1.3.2.) zeigen die drei Klassen der ionotropen Glutamatrezeptoren eine beträchliche Diversität. So gibt es vier verschiedene Unterheiten vom AMPA-Subtyp, nämlich GluR-A, GluR-B, GluR-C und GluR-B. In dieser Arbeit steht die Strukturanalyse eines aus GluR-B Untereinheiten bestehenden AMPA-Rezeptors im Vordergrund. (Die weitere Unterteilung der NMDA- und Kainatrezeptoren kann dem Kapitel 1.3.2. auf Seite 6 entnommen werden.) Bestimmte Abschnitte der Aminosäurensequenz von Glutamatrezeptoren sind durch hydrophobe Bereiche gekennzeichnet ((M1-M4) in Abbildung 6.1.A (A.)). Das durch verschiedene Untersuchungen etablierte Modell der Glutamatrezeptor-Topologie zeigt 3 Transmembrandomänen (M1, M3 und M4) und eine Membranschleife (M2) (Hollmann et al., 1994), (Kuner et al., 1996). Der Aminoterminus ist extrazellulär, der Carboxyterminus hingegen intrazellulär. Daraus ergibt sich die in Abbildung 6.1.A (B.) abgebildete Topologie (Paas, 1998). S1 und S2 kennzeichnen die Ligandbindungsdomäne. Glutamatrezeptoren (GluR) sind Oligomere, die sich mit grosser Wahrscheinlichkeit aus vier Untereinheiten (Rosenmund et al., 1998), (Ayalon and Stern-Bach, 2001) zusammensetzen (siehe Kapitel 1.3.3.). Die Zusammenlagerung verschiedener Untereinheiten zu einem funktionellen Kanal setzt voraus, dass die Untereinheiten zum gleichen Subtyp gehören, d.h. AMPA Untereinheiten können nur mit anderen AMPA Untereinheiten einen Ionenkanal bilden. Das gleiche gilt für die Zusammensetzung von NMDA und Kainat-Rezeptoren. Das Modell eines tetrameren Glutamatrezeptors ist im Bild C. der Abbildung 6.1.A zu sehen. Die Bestimmung der Quartärstruktur eines vollständigen Glutamatrezeptors ist bislang nicht veröffentlicht. Die strukturelle Analyse von Proteinen erfordert die Isolierung von reinem und funktionellem Protein. Im Vergleich zu den meisten löslichen Proteinen erfordert die Isolierung von Membranproteinen oft besonderer Optimierung. Falls das Vorkommen des Proteins in natürlichem Gewebe gering ist, so kann die strukturelle Analyse durch rekombinante Expression in einem geeigneten Wirtsorganismus zugänglich gemacht werden. Die Isolierung von Milligramm-Mengen eines rekombinanten homomeren GluR-B Rezeptors aus dem entsprechenden Baculovirusexpressionssystem (Keinänen et al., 1994) wurde in unserem Labor etabliert (Safferling et al., 2001) und wurde im ersten Jahr dieses Projektes fortgeführt. Durch zonale Ultrazentrifugation konnte gezeigt werden, dass die molekulare Masse des GluR-B Proteinkomplexes ca. 495 kD beträgt. Dieser Wert liegt in der Nähe des theoretischen Molekulargewichts eines tetrameren Ionenkanals, dessen Molmasse sich aus vier GluR-B Untereinheiten (104 kD) und einer Detergenzmizelle von ca. 63-97 kD zusammensetzt (Safferling et al., 2001). Die elektronenmikroskopische Analyse des Proteinkomplexes von W. Tichelaar aus unserer Gruppe erfolgte 1999 durch Negativfärbung. Für die Strukturanalyse mit Hilfe der Software IMAGIC wurden 10 000 Proteinteilchen selektiert. Das Ergebnis der Bildrekonstruktion ist in der folgenden Abbildung 6.1.B gezeigt. Die projezierten Dimensionen des Models entsprechen einem Molekül mit den Dimensionen 17 nm × 11 nm × 14 nm. Das Model zeigt keine ausgezeichnete Symmetrie, die auf die Stöchiometrie des GluR hinweisen könnte. Das Molekül zeigt mit Färbemittel gefüllte Vertiefungen und innere Strukturen, die vielleicht an der Ionenleitung beteiligt sind. 6.2. Funktionelle und strukturelle Charakterisierung des GluR-B Ionenkanals In der Fortsetzung des oben beschriebenen Projektes wurden für die rekombinante Expression desselben Rezeptors (GluR-B homomer) stabil transformierte Insektenzellen eingesetzt. Dazu wurde die für die GluR-B Untereinheit kodierende und in Plasmiden enthaltene DNA in Insektenzellen transformiert (siehe APPENDIX A.2.2.). Im Vergleich zu dieser auf Dauerhaftigkeit angelegten Integration der Rezeptor DNA wird die Proteinexpression beim Baculovirusexpressionssystem durch Infektion mit rekombinanten Baculoviren initiiert. Der Vergleich zeigte, dass die mit Baculoviren erzielten Ausbeuten bei GluR-B etwa doppelt so hoch waren als bei stabil transformierten Zellen. Allerdings fallen bei stabil transformierten Zellen die eventuellen Nachteile der viralen Belastung auf die zellulären Sekretionsprozesse weg. Im Verlauf der elektronenmikroskopischen Analyse von baculoviral erzeugtem GluR-B Protein hat sich gezeigt, dass Proteine viralen Ursprungs unter Umständen selbst doppelt aufgereinigte GluR-B Proben verunreinigen können (siehe APPENDIX A.2.1.). Dieser Punkt ist bei einer Einzelbildverarbeitung von grosser Relevanz, falls die virusspezifischen Proteinverunreinigungen eine ähnliche Grösse haben wie das eigentliche Zielprotein. Das Hauptziel dieser Arbeit war es, das Potenzial stabil transformierter Insektenzellen für die Expression von homomeren GluR-B Ionenkanälen zu bewerten und dabei die Stöchiometrie der Untereinheiten in diesem Ionenkanal aufzuklären. Zu diesem Zweck wurden biochemische und elektronenmikrosopische Techniken eingesetzt. Zur Isolierung des GluR-B Ionenkanals aus stabil transformierten Insektenzellen wurde das bestehende Aufreinigungsprotokoll für die Affinitätchromatographie an immobilisierten Metallionen (IMAC) (Safferling et al., 2001) optimiert, indem das Chargenverfahren durch das Durchflussverfahren ersetzt wurde (zur genaueren Erklärung der Optimierung siehe RESULTS 4.1.2.). Abbildung 6.C zeigt ein silbergefärbtes Gel mit den Eluaten der IMAC und Eluaten der abschliessenden Affinitätschromatographie mit immobilisiertem M1-Antikörper. Die auf den Bahnen 5-8 aufgetragen GluR-B Proben wurden auch für die Einzelteilchenanalyse mittels Elektronenmikroskopie verwendet. Die Ligandbindungsaktivität von GluR-B wurde durch Filterbindungsexperimente mit dem Radioliganden [3H]-AMPA vor und nach der Isolierung aus den Membranfragmenten bestimmt. Die KD-Werte sind für beide Proben ähnlich gross. Der Bmax-Werte ist für die aufgereinigte Probe wie erwartet sehr viel (mehr als 200×) höher. Die Ergebnisse der Ligandbindungsexperimente sind im Kapitel 4.2.1 tabellarisch zusammengefasst. Die oligomere Struktur des isolierten Ionenkanals wurde durch Quervernetzungsexperimente (Cross-linking) und Einzelteilchenanalyse von negativ gefärbten Proteinmolekülen bewertet. Die Quervernetzungsexerimente selbst erbrachten kein eindeutiges Ergebnis im Hinblick auf oligomere Struktur des komplett zusammengesetzten Rezeptors. Kontrollexperimente mit dem Lysat vom Rattenhippocampus zeigten, dass mit DTSSP ein geeigneter Cross-Linker verwendet wurde (siehe RESULTS 4.3.2.). Neben einem aus 4 Banden bestehenden Muster (siehe RESULTS 4.3.1.) lieferten die Quervernetzungsexperimente mit isoliertem GluR-B aber einen deutlichen Hinweis auf die Stabilität von dimeren GluR-B Strukturen, die im Einklang mit einer jüngst veröffentlichten Arbeit stehen (Ayalon and Stern-Bach, 2001). Diese Veröffentlichung liefert zusätzliche (Armstrong et al., 1998) Hinweise auf die Bedeutung von Dimeren in der Glutamatrezeptorstruktur und postuliert, dass sich ein kompletter Glutamaterezeptor aus einem Dimer-Paar zusmmensetzt, wobei die Dimere zuerst gebildet werden. Die nachfolgende Abbildung 6.2.B zeigt negativ gefärbte GluR-B Ionenkanäle bei einer 46000× Vergrösserung. Die Aufnahme stammt von einem Philips EM 400 Elektronenmikroskop. Für die 3D Rekonstruktion wurden 500 der in Abbildung 6.2.B gezeigten Rezeptormoleküle ausgewählt. Dieser relativ kleine Datensatz besteht aus GluR-B Ionenkanälen deren Präservierung in Uranylacetat als besonderes vielversprechend eingeschätzt wurde. Dieser positive Effekt wurde auf die Verwendung frisch von einer Wasseroberfläche aufgefischter Kohlefilme zurückgeführt (siehe RESULTS 4.4.3.3.). Während der Klassifizierung dieses Datensatzes fiel auf, dass die beim Band-Pass-Filtern für die niedrigen Frequenzen gesetzten Cut-offs einen deutlichen Einfluss auf die erste Klassifizierung der unterschiedlichen zweidimensionalen Ansichten des Proteinkomplexes haben (siehe RESULTS 4.4.3.4.). Aus diesem Grund wurde der gleiche Datensatz mit 5 verschiedenen low-frequency cut-offs (LFCO) gefiltert (siehe Table 4.4.3.4.) und getrennt klassifiziert. Von den 5 resultierenden Klassifikationen wurden 3 (LFCO 0,005, 0,03 und 0,05) für die weiterführende 3D Rekonstruktion ausgewählt. Die Evaluierung der resultiernden 3D Modelle ergab, dass der mit einem LFCO von 0,03 gefilterte Datensatz eine Klassifikationen erlaubte, die zu einem 3D Modell (Modell GluR-BII/a siehe RESULTS Figure 4.4.3.4.H) führte, das im Vergleich zu den beiden anderen Rekonstruktionen konsistenter war. Am stärksten spricht für dieses Modell die Übereinstimmung der Input-Projektionen mit den Reprojektionen der 3D Rekonstruktion (siehe siehe RESULTS Figure 4.4.3.4.H). Zur Verfeinerung des Modells GluR-BII/a wurden die beiden Projektionen mit der höchsten Standardabweichung vom Klassendurchschnitt (class average) eliminiert. Die verbleibenden 11 Projektionen bildeten die Input-Projektionen für die Berechung eines verfeinerten Modells, GluR-BII/b, das auf einer neuen Zuordnung der Euler-Winkel beruht. Das Ergebnis dieser Berechung ist in der nachfolgenden Abbildung gezeigt. Das Modell in Abbildung 6.2.C zeigt einen zentralen Kanal und hat die Dimensionen 18 nm × 14 nm × 11 nm. Die Stöchiometrie der Untereinheiten ist aus dem Modell, das mit grosser Wahrscheinlichkeit einen komplett zusammengesetzten GluR darstellt, nicht ablesbar. Ebensowenig zeigt das Modell eine eindeutig vierzählige oder fünfzählige Symmetrie. Allerdings ist die erkennbare zweizählige Symmetrie im Einklang mit dem vorgeschlagenen Pair-of-Dimer Modell (Ayalon and Stern-Bach, 2001), das auf eine teramere Struktur des oligomeren Ionenkanals schliessen lässt. Die Ergebnisse dieser Arbeit zeigen, dass stabil transifzierte Insektenzellen eine durchaus geeignete Quelle für GluR-B Ionenkanäle sind. Nachteilig sind die geringen Ausbeuten. Allerdings kann durch weitere Selektion der Zellen die GluR Expression noch gesteigert werden (siehe APPENDIX A.2.2.). Bei höheren GluR-B Ausbeuten könnte zukünftig auch die Detektion des Rezeptors in vitrifizierten Proben in Verbindung mit Kryo-Elektronen- mikroskopie und auch die 2D-Kristallisation gelingen. Die während dieses Projekts gemachten Kristallisationsexperimente (siehe APPENDIX A.3.) und Kryo-Experimente mit GluR-B Protein aus dem Baculovirusexpressionssystem (siehe RESULTS 4.4.1. und 4.4.2.) ergaben negative Ergebnisse. Das Potential der Kryo-Methode konnte allerdings in Kontrollexperimenten mit Tabak-Mosaik-Virus (TMV) gezeigt werden. Kryo-Daten von GluR-B würden die Berechnung eines genaueren Strukurmodells erlauben. Die Reprojektionen des hier besprochenen Strukturmodells GluR-BII/b aus der Abbildung 6.2.C könnten als Referenzen für das Alignment der vitrifizierten GluR Ionenkanäle dienen. Für das langfristige Ziel der Rekonstituition des Rezeptors in Liposomen sollte die Delipidierung des Membranproteins während der Aufreinigung möglichst reduziert werden. Hier erscheinen zwei Ansätze sinnvoll. Die Aufreinigung des Proteins in einem Schritt durch die Erweiterung des tags am Carboxyterminus von nur 6 auf 10 Histidin-Reste. Ausserdem gibt es Hinweise, dass die Anwesenheit von Lipiden während der Aufreinigung für seine Rekonstituierbarkeit förderlich ist (Huganir and Racker, 1982).