Entwicklung und Charakterisierung nanopartikulärer Arzneiträgersysteme auf Proteinbasis
- Einen vielversprechenden Ansatz auf dem Gebiet der Entwicklung kolloidaler Arzneiträgersysteme stellen die proteinbasierten Nanopartikel dar, da sie biodegradierbar und nicht toxisch sind und eine Reihe möglicher Angriffspunkte zur kovalenten Bindung von Arzneistoffen und zur Oberflächenmodifikation aufweisen. Im Rahmen dieser Arbeit wurde der Herstellungsprozeß von HSANanopartikeln und sein Einfluß auf die physikochemischen Eigenschaften des resultierenden Partikelsystems evaluiert. Durch Oberflächenmodifikation wurde eine Kopplung von Proteinen mittels bifunktionaler Crosslinker ermöglicht und die zelladhäsiven Eigenschaften des Trägersystems vermindert. Durch Kopplung funktioneller Proteine wurden die ersten Schritte in Richtung eines ligandenvermittelten DrugTargetings unternommen. Evaluierung des Herstellungsprozesses und Charakterisierung des resultierenden partikulären Systems Die Evaluierung des Desolvatationsprozesses von HSANanopartikeln ergab eine Abhängigkeit der Partikelgröße und der Partikelanzahl vom zugesetzten Desolvatationsmittel Ethanol. Die Quervernetzung des resultierenden Systems beeinflußte die Anzahl der freien Aminogruppen an der Partikeloberfläche: Je mehr Glutaraldehyd zugesetzt wurde, desto weniger Aminogruppen waren nachweisbar. Die Härtung der Partikel durch Einwirkung hoher Temperaturen führte ebenfalls zu stabilen Partikeln. Die Anzahl der verfügbaren Aminogruppen lag im Vergleich zu den Glutaraldeydquervernetzten höher. Die Art und das Ausmaß der Quervernetzung hatten keinerlei Einfluß auf die mittlere Partikelgröße. Das Zetapotential dagegen zeigte eine Tendenz, mit steigender Quervernetzung negativer zu werden. Ein Vergleich dieser Ergebnisse mit den Aminogruppen an der Oberfläche von GelatineA und BNanopartikeln verdeutlichte, daß HSANanopartikel signifikant mehr freie Aminogruppen an der Partikeloberfläche, und damit mehr Angriffspunkte zur kovalenten Kopplung und Oberflächenmodifikation aufweisen, als GelatineNanopartikel, wobei Gelatine ANanopartikel mehr als doppelt so viele Aminogruppen an der Oberfläche besitzen als Gelatine BPartikel. Die höchsten Aminogruppenzahlen zeigten die hitzedenaturierten HSANanopartikel. Einführung von Sulfhydrylgruppen an die Partikeloberfläche Im Rahmen dieser Arbeit wurden sechs Methoden zur Einführung von Thiolgruppen auf die Oberfläche von HSANanopartikeln evaluiert. Die effektivste Methode ergab sich aus der Kopplung von Cystamin mit dem Kopplungsreagenz EDC, gefolgt von einer reduktiven Spaltung der Cystamindisulfidbindungen und der Disulfidbrücken der HSAPartikelmatrix mit DTT. Bedauerlicherweise zeigte diese Partikelpräparation die höchste Toxizität der untersuchten Zubereitungen in der Zellkultur. Die Kopplung von LCystein mit EDC war aufgrund unerwünschter Nebenreaktionen wesentlich weniger effektiv. Die einfachste Art, Thiolgruppen einzuführen, war die reduktive Spaltung der Disulfidbrücken der HSAPartikelmatrix mit DTT. Doch Bindungsexperimente zeigten, daß diese Thiolgruppen zwar mit Ellmans Reagenz nachweisbar waren, aber zu Bindungszwecken wahrscheinlich aus sterischen Gründen nur in untergeordnetem Maße zur Verfügung standen. Die Verwendung von 2Iminothiolan (Trauts Reagenz) war eine im Vergleich zur Cystamin/EDCMethode einfache und leicht zu handhabende Methode zur Einführung von SHGruppen, allerdings mit relativ geringer Effizienz. Das Quenchen freier Glutaraldehydreste an der Partikeloberfläche mit Cystamin führte zu einem sehr niedrigen SHGruppengehalt, mit LCystein waren so gut wie keine Thiolgruppen nach der Umsetzung nachweisbar. Die SHGruppen wurden bei einer Lagerung bei 4°C mit einer Halbwertszeit von 28,2 Tagen abgebaut, unabhängig von der Art der SHGruppeneinführung. Die Reaktivität der SHGruppen dagegen nahm wesentlich schneller ab als ihre Nachweisbarkeit: Bereits am dritten Tag nach der SHGruppeneinführung lag die Bindungsrate von mit SHreaktiven Crosslinkern aktivierten Proteinen um 2030 % niedriger, verglichen mit dem ersten Tag. Durch Veränderung der Reaktionsparameter konnte bei allen Methoden die Anzahl der eingeführten Thiolgruppen kontrolliert werden. Durch die Einführung der SHGruppen zeigten die Nanopartikel eine deutlich höhere Mukoadhäsion. Oberflächenmodifikationen Das Ziel der Oberflächenmodifikation der HSANanopartikel war zum einen eine Positivierung des Zetapotentials, um die Bindung negativ geladener Arzneistoffe wie DNA über elektrostatische Wechselwirkungen zu ermöglichen. Die Umsetzung der Partikel mit EDC allein oder mit EDC und Cystamin bzw. Cholamin führte zu einer deutlichen Verschiebung des Zetapotentials in den positiven Bereich. Durch Veränderung der Cholamin bzw. Cystaminkonzentration war die Verschiebung des Zetapotentials steuerbar. Gleiches galt für die Umsetzung der Gelatine APartikel, allerdings waren hier deutlich geringere Konzentrationen zur Erlangung der gleichen positiven Zetapotentiale notwendig. Zum anderen sollte durch die Modifikation der Partikeloberfläche ein verändertes Verhalten hinsichtlich der Zelladhäsion der Partikel erzielt werden. Es zeigte sich eine verstärkte Zelladhäsion nach der Einführung weiterer Aminogruppen und nach der Einführung lipophiler Gruppen. Eine verminderte Zelladhäsion wurde durch eine Maskierung der Aminogruppen erreicht. Die besten Ergebnisse erbrachte hierbei die Umsetzung der HSANanopartikel mit Jodessigsäure. Bindung funktioneller Proteine Um zu überprüfen, ob funktionelle Proteine an das evaluierte Trägersystem unter Erhalt der Funktionalität gebunden werden können, wurden zunächst Enzyme über den bifunktionalen Crosslinker SulfoMBS kovalent gekoppelt. Analysen der Bindungsrate und der tatsächlichen enzymatischen Aktivität differierten zwar, doch ist dies wohl auf eine noch nicht hinreichend optimierte Analytik zurückzuführen. Eine enzymatische Aktivität der alkalischen Phosphatase und der bGalaktosidase war nach der Bindung an das Trägersystem eindeutig nachweisbar. Als weiteres funktionelles Protein wurde das Avidinderivat NeutrAvidin(TM) gewählt und mit SulfoMBS an Gelatine ANanopartikel gekoppelt. Durch die Bindung biotinylierter Antikörper konnte der Erhalt der Funktionalität des gebunden NeutrAvidins(TM) gezeigt werden. Die Konjugation eines biotinylierten, humanen CD3 Antikörpers an das NeutrAvidin(TM)konjugierte Partikelsystem führte zu einer selektiven Bindung des Trägersystems an primäre humane Lymphozyten. Auch eine Aufnahme des Trägersystems in die Zellen konnte gezeigt werden. Die Experimente zum Antikörpervermittelten Targeting konnten mit HSANanopartikeln nicht reproduziert werden, da HSAPartikel eine so starke Zelladhäsion zeigten, daß ein Targeting aufgrund des Antikörpers nicht mehr ersichtlich war. Erste Versuche mit oberflächenmodifizierten HSAPräparationen, wie beispielsweise einer Jodessigsäure Umsetzung, führten zu einer deutlich verminderten Zelladhäsion. Weitergehende Experimente zur Evaluierung dieses Effektes sind für die Weiterentwicklung dieses Trägersystems entscheidend.