The complexity of approximate optima for greatest common divisor computations
- We study the approximability of the following NP-complete (in their feasibility recognition forms) number theoretic optimization problems: 1. Given n numbers a1 ; : : : ; an 2 Z, find a minimum gcd set for a1 ; : : : ; an , i.e., a subset S fa1 ; : : : ; ang with minimum cardinality satisfying gcd(S) = gcd(a1 ; : : : ; an ). 2. Given n numbers a1 ; : : : ; an 2 Z, find a 1-minimum gcd multiplier for a1 ; : : : ; an , i.e., a vector x 2 Z n with minimum max 1in jx i j satisfying P n...
Author: | Carsten Rössner, Jean-Pierre Seifert |
---|---|
URN: | urn:nbn:de:hebis:30-16712 |
URL: | http://citeseer.ifi.unizh.ch/25868.html |
Place of publication: | Frankfurt am Main |
Document Type: | Report |
Language: | English |
Date of Publication (online): | 2005/09/28 |
Year of first Publication: | 1996 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Release Date: | 2005/09/28 |
Page Number: | 16 |
HeBIS-PPN: | 358603684 |
Institutes: | Informatik und Mathematik / Mathematik |
Informatik und Mathematik / Informatik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | Deutsches Urheberrecht |