The complexity of approximate optima for greatest common divisor computations

  • We study the approximability of the following NP-complete (in their feasibility recognition forms) number theoretic optimization problems: 1. Given n numbers a1 ; : : : ; an 2 Z, find a minimum gcd set for a1 ; : : : ; an , i.e., a subset S fa1 ; : : : ; ang with minimum cardinality satisfying gcd(S) = gcd(a1 ; : : : ; an ). 2. Given n numbers a1 ; : : : ; an 2 Z, find a 1-minimum gcd multiplier for a1 ; : : : ; an , i.e., a vector x 2 Z n with minimum max 1in jx i j satisfying P n...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Carsten Rössner, Jean-Pierre Seifert
URN:urn:nbn:de:hebis:30-16712
URL:http://citeseer.ifi.unizh.ch/25868.html
Place of publication:Frankfurt am Main
Document Type:Report
Language:English
Date of Publication (online):2005/09/28
Year of first Publication:1996
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/09/28
Page Number:16
HeBIS-PPN:358603684
Institutes:Informatik und Mathematik / Mathematik
Informatik und Mathematik / Informatik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht