Proteinproduktion und Strukturuntersuchungen von Natrium/Protonen-Austauschern

  • Natrium/Protonen-Austauscher sind integrale Proteine biologischer Membranen und aufgrund ihrer funktionalen Abhängigkeit von einem elektrochemischen Gradienten der Klasse der Sekundärtransporter zugeordnet. Sie spielen eine essentielle Rolle sowohl in der Adaption von Bakterien an eine saline, alkalische Umgebung, als auch in der Regulation des intrazellulären pH- und Natriumhaushalts in Eukaryonten. Aufgrund der medizinischen Relevanz, unter anderem im Rahmen in der Behandlung des Herzinfarkts, besteht großes Interesse an der Struktur und den biochemischen Charakteristika des im Menschen ubiquitär vorkommenden Natrium/Protonen-Austauschers NHE1. Die heterologe und funktional aktive Produktion eukaryontischer Membranproteine stellt jedoch immer noch eine enorme Herausforderung dar, bei der sich das auf dem Semliki Forest Virus basierende Expressionssystem als gut geeignet erwiesen hat. Da die Überexpression von NHE1 mittels verschiedener eukaryontischer Expressionssysteme bisher kein kristallisationsfähiges Material liefern konnte, sollte in dieser Arbeit die heterologe Gewinnung von NHE1 mit dem Semliki Forest Virus Expressionssystem ermöglicht werden. Das Semliki Forest Virus Expressionssystem wurde auf Basis eines Vektorkonstrukts mit GFP zur späteren Übertragung der Parameter auf die Produktion von NHE1 etabliert. Konstrukte von NHE1 mit N- und C-terminalem Affinitäts-Tag wurden erfolgreich kloniert und zur Infektion von BHK-21 Zellkulturen eingesetzt. Dabei konnte beobachtet werden, dass der N-Terminus abgespalten wird und wahrscheinlich als Signalpeptid zum Einbau in die Membran dient. Das Protein wurde im Endoplasmatischen Retikulum lokalisiert, wo die Glykosylierung zum Transport in die Plasmamembran unterbleibt, was auf eine Interferenz mit der Virusinfektion zurückgeführt wurde. Eine Infektion der Zellen mit dem Semliki Forest Virus hat neben einem bereits bekannten massiven Anstieg des intrazellulären Natriumgehalts eine starke Alkalinisierung des Zytoplasma zur Folge. Ähnliches ist bisher über die Infektion von Zellen mit dem Poliovirus bekannt und stellt dort ein Schlüsselelement in der Sicherstellung der viralen Replikation dar, was auch für das Semliki Forest Virus zu gelten scheint. Die Expression von NHE1 konnte im 8 Liter-Maßstab optimiert und sowohl die Präparation als auch die Solubilisierung mit verschiedenen Detergenzien erfolgreich eingeführt werden. NHE1 erfährt jedoch bereits in vivo einen erheblichen proteolytischen Abbau, der sich während der Membranpräparation und Aufreinigung fortsetzt und zu einer Fragmentierung führt, die trotz des Einsatzes unterschiedlicher Kultivierungszeiten, Detergenzien, Additive oder Proteaseinhibitoren in vivo als auch in vitro nicht in einem Maße reduziert werden konnte, welches zur Gewinnung von kristallisationsfähigem Material erforderlich gewesen wäre. Es muss empfohlen werden einen in vivo Ansatz zu etablieren, um die proteolytische Degradation zu unterdrücken. Da die Virusreplikation nicht erforderlich ist, wäre Bafilomycin als Inhibitor der V-Typ ATPase geeignet, um die intrazelluläre Alkalinisierung und somit wahrscheinlich den Abbau von NHE1 zu verhindern. Ebenso erscheint der Einsatz von MG-132 zur spezifischen Inhibierung des Proteasoms Erfolg versprechend, was aber wegen hoher Kosten praktisch kaum in Frage kommt. Da man trotz individuell gelagerter Unterschiede zwischen den einzelnen Natrium/Protonen-Austauschern von einem ähnlichen Prinzip in Regulation und Transport ausgeht, wurden Strukturuntersuchungen mit Hilfe der Kryo-Elektronenmikroskopie am bakteriellen Natrium/Protonen-Antiporter NhaA aus Escherichia coli durchgeführt, um die strukturelle Basis der pH-Wahrnehmung und die Translokation von Natrium in das Periplasma besser zu verstehen. Die vorliegende Röntgen- und EM-Struktur repräsentieren den inaktiven Zustand, weshalb der eigentliche Ablauf des Transportvorgangs bisher biochemisch herzuleiten war, da bislang keine Kristalle im aktiven Zustand gezüchtet werden konnten. Durch die in situ Inkubation von 2D-Kristallen konnten aktive Zustände des Proteins direkt auf dem EM-Netz induziert und kryo-elektronenmikroskopisch festgehalten werden. Einzelne Datensätzen wiesen Reflexe bis zu 5 Å auf. Aus den angefertigten Projektionsdichte- und Differenzkarten ergaben sich pH- und Natrium-abhängige Konformationsänderungen. Die Röntgenstruktur wurde mit Hilfe des Molekularen Ersatzes in die EM-Struktur eingepasst und diente der Zuordnung und Interpretation der beobachteten Zustände als Basis. Die pH-abhängige Konformationsänderung wurde einem mit der funktional wichtigen Helix 9 assoziierten Bereich zugeordnet, welcher durch die Röntgenstruktur nicht definiert ist und wahrscheinlich die fehlenden Aminosäuren des regulatorisch relevanten N-Terminus enthält. Die beobachtete Konformationsänderung stellt das Entstehen einer besser geordneten Struktur dar und geht mit der pH-regulierten Aktivierung von NhaA zwischen pH 6 und 7 einher, weshalb dieser Bereich des Proteins zumindest als Bestandteil des sogenannten pH-Sensors betrachtet werden kann. Nach der vollständigen Aktivierung durch den pH-Wert, welche der folgenden Natrium-abhängigen Konformationsänderung vorauslaufen muss, konnte beobachtet werden, dass die Präsenz von Natrium im Rahmen der Ionentranslokation eine Bewegung des periplasmatischen Teils von Helix 4 induziert. Es wäre interessant, eine tiefergehende und genauere Charakterisierung der beobachteten Konformationsänderungen durch die Erstellung einer dreidimensionalen EM-Dichtekarte zu ermöglichen. Des Weiteren hat die eingehendere Untersuchung des röntgenkristallographischen Monomers nach der Einpassung in das physiologisch vorliegende Dimer der EM-Struktur sowohl eine für Membranproteine neuartige „Joint β-Sheet“ Dimerisierungsdomäne im Periplasma, als auch eine Verzahnung von Helix 7 und 9 an der Monomer-Monomer-Grenze aufgezeigt. Diesen Charakteristika kommt wahrscheinlich eine tragende Rolle in der Dimerisierung von NhaA zu, was durch weitere Untersuchungen im Rahmen einer Mutagenesestudie unter Einbeziehung der periplasmatischen β-Haarnadelstrukturen überprüft werden sollte.

Download full text files

  • Dissertation_Matthias_Appel_2006.pdf
    deu

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Appel
URN:urn:nbn:de:hebis:30-33676
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Bernd LudwigGND, Werner KühlbrandtORCiDGND
Advisor:Werner Kühlbrandt
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/22
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/01/02
Release Date:2006/11/22
Page Number:159
First Page:1
Last Page:146
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:34448792X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG