Untersuchungen zur Rolle von Sauerstoffradikalen in der Regulation von Hypoxie-induzierbaren Faktoren

  • Hypoxie entsteht, wenn das Sauerstoffangebot bzw. die Sauerstoffversorgung unter ein Niveau sinkt, das benötigt wird, um physiologische O2-Drücke des betreffenden Gewebes aufrecht zu erhalten. Sinkt der Sauerstoff-Partialdruck, so werden adaptive Mechanismen aktiviert. Neben der Anpassung durch das kardiovaskuläre System werden auch verschiedene Gene aktiviert. Die Forschung der letzten Jahre hat gezeigt, dass Hypoxieinduzierte Genexpression insbesondere von zwei Transkriptionsfaktoren, HIF (hypoxia inducible factor) -1 und -2 , gesteuert wird. Man kennt über 70 Gene, die von HIF transaktiviert werden. Dabei handelt es sich um Modulatoren von Angiogenese und Vasodilatation, Erythropoese sowie der Umstellung des Stoffwechsels von oxidativer Phosphorylierung auf Glykolyse. Die Hypoxie-induzierbare Genexpression wird sowohl über eine Steigerung der Transaktivierungsaktivität als auch der Proteinmenge der HIF- -Untereinheiten reguliert. Die Regulation der HIF-Proteinmenge erfolgt über eine vom O2-Partialdruck abhängige Stabilisierung der -Untereinheit des Proteins. Unter normoxischen Bedingungen wird das Protein durch die Prolylhydroxylasen (PHD) O2-abhängig hydroxyliert, pVHL-vermittelt (VHL = von Hippel-Lindau), ubiquitiniert und proteosomal abgebaut. Unter hypoxischen Bedingungen dagegen wird das Protein stabilisiert, akkumuliert im Zellkern und bindet an eine spezifische Zielsequenz, das Hypoxia-responsive element oder HRE, imPromotor von Hypoxie-aktivierten Genen. Die PHDs gehören zu einer Familie von Eisen- und 2-Oxoglutarat-abhängigen Dioxygenasen. Neben diesen Faktoren wird eine Regulation von HIF durch Sauerstoffradikale (ROS, reactive oxygen species) in der Literatur sehr kontrovers diskutiert, da die Wirkung von ROS auf HIF sich unter Normoxie, Hypoxie oder dem Einfluss von Wachstumsfaktoren unterscheidet. Im Rahmen dieser Arbeit sollte die Frage, welche Rolle die PHDs bei der ROS-vermittelten HIF-Regulation spielen, beantwortet werden. Der zugrunde liegende Mechanismus wurde anhand von Glioblastom-Zelllinien untersucht. Die vorliegende Arbeit zeigt eine Stabilisierung von HIF nach Verringerung der ROS-Konzentration unter Normoxie. Eine Erhöhung der ROS-Konzentration führt dagegen zu einer dosisabhängigen Verminderung von HIF und der HIF-Targetgen-Expression. Es konnte eine direkte Abhängigkeit der Destabilisierung von VHL und den Prolylhydroxylasen gezeigt werden, da sowohl eine VHL-Defizienz als auch eine Mutation der Prolylreste oder eine Inhibition der PHDs zu einer Aufhebung des Effekts führen. Eine vergleichbare destabilisierende Wirkung auf HIF übt Ascorbat aus. Überraschenderweise führt sowohl die Zugabe von H2O2 mit seiner oxidativen Wirkung als auch die Zugabe des Reduktionsmittels Ascorbat zu einer Erhöhung des intrazellulären Fe2+-Gehaltes. Dieser Befund kann durch eine Aktivierung von Enzymen mit eisenreduzierenden Eigenschaften erklärt werden. Im Rahmen dieser Arbeit wurde die Proteinfamilie der Ferrireduktasen (FR) identifiziert und fünf Enzyme, die eine Homologie zur cytb561-Domäne aufweisen, kloniert. Eine detaillierte Charakterisierung zeigte, dass die Enzyme tatsächlich eine eisenreduzierende Aktivität aufweisen, die durch die exogene Zugabe von ROS noch erhöht wird. Eine Überexpression der FR führt zu einem erhöhten Abbau von HIF. Ein knock down mittels siRNA führt dagegen zu einer Akkumulation von HIF und die destabilisierende Wirkung von ROS ist nach einemknock down der FR deutlich reduziert. Aufgrund der in dieser Doktorarbeit gezeigten Daten kann folgendes Modell aufgestellt werden: Die primäre oxidative Wirkung von ROS führt vermutlich zu einer Aktivierung der Ferrireduktasen, die in Abhängigkeit von Ascorbat dann vermehrt Eisen reduzieren, so dass dies den PHDs als Substrat zur Verfügung steht. Der regulierende Einfluss auf HIF wird somit vermutlich über eine erhöhte Aktivität der Prolylhydroxylasen durch eine Erhöhung des intrazellulären Fe2+-Gehaltes vermittelt. Die erhobenen Daten deuten an, dass die Familie der Ferrireduktasen ein zentrales Bindeglied im O2-Sensing darstellt, das in Abhängigkeit von Redox-Signalen homeostatische Antworten auf Hypoxie moduliert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Eva Julia Wenner
URN:urn:nbn:de:hebis:30-33319
Place of publication:Frankfurt am Main
Referee:Anna Starzinski-PowitzORCiDGND, Karl PlateGND
Advisor:Anna Starzinski-Powitz
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/20
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/07/24
Release Date:2006/11/20
Page Number:133
First Page:1
Last Page:123
HeBIS-PPN:185860664
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht