Studie zur Messung von Quarkonia mit dem ALICE-TRD und Aufbau eines Teststandes für seine Auslesekammern

  • Als eines der Experimente am neuen Beschleuniger des Europäischen Labors für Teilchenphysik CERN, dem LHC, wird ALICE die Messung von Schwerionenkollisionen bei bislang unerreichten Energien ermöglichen. Die wichtigste Aufgabe ist dabei, verschiedene Phasen stark wechselwirkender Materie zu untersuchen und deren theoretisches Verständnis zu prüfen. Eine vielversprechende Observable ist die Rate produzierter Quarkonia, welche über ihren Zerfall in ein Leptonenpaar zu bestimmen ist. Daher ist die Hauptaufgabe des TRD, einem Subdetektor von ALICE, eine besonders gute Identifikation von Elektronen zu ermöglichen. Ein Teil der vorliegenden Arbeit war der Aufbau eines Teststandes für die Auslesekammern des TRD. Die verschiedenen vorgegebenen Messroutinen wurden zur Anwendung gebracht und wenn möglich verfeinert. Schließlich wurde die Prozedur der Langzeitsstabilitätsmessung verwendet, um den Koeffizienten der Elektronenanlagerung in der Gasmischung Ar-CO2 (70:30) zu bestimmen. Trotz der großen Ungenauigkeiten der Messung fügen sich die Ergebnisse sehr gut in die Systematik bereits vorhandener Daten bei ähnlichen Gasmischungen ein. Insbesondere bei Strahlenergien, wie sie am LHC verf¨ugbar sein werden, sind Kollisionen zweier Protonen eine wichtige Referenz für die Messung von Quarkonia in Schwerionenkollisionen. Dieser Studie zufolge ist es mit dem ALICE-TRD möglich, in 2 · 108 unselektierten (minimum bias) Proton-Proton-Kollisionen bei einer Schwerpunktsenergie von 14 TeV ein signifikantes J/ψ-Signal aufzunehmen. Die Messung schwererer Quarkonia-Zustände ist ohne Ereignisselektion nicht möglich. Der größte Beitrag zum Untergrund oberhalb einer invarianten Masse von 0.5 GeV/c2 ist durch Zerfälle von Teilchen mit offenem charm oder beauty zu erwarten. Die Like-Sign-Methode lieferte das beste Ergebnis bei der Berechnung eines unkorrelierten Untergrundspektrums. Auch bei Transversalimpulsen des Elektron-Positron-Paars oberhalb von etwa 4 GeV/c ist noch ein signifikantes J/ψ-Signal zu erwarten, zudem offenbar mit einem verhältnismäßig geringeren Beitrag durch Untergrund. Bei einem vorläufigen Einsatz von nur 4 der insgesamt 18 Supermodule des TRD ist ein zwar messbares, jedoch sehr reduziertes Signal zu erwarten. Bei einer noch geringeren Zahl scheint das ohne Ereignisselektion nicht möglich.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frederick Kramer
URN:urn:nbn:de:hebis:30-38698
Advisor:Christoph Blume
Document Type:diplomthesis
Language:German
Year of Completion:2006
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2007/03/12
HeBIS-PPN:185959202
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht