Untersuchungen zur zerstörungsfreien Emittanzmessung an einem negativen Wasserstoffionenstrahl

  • Die Arbeit beschäftigte sich sowohl theoretisch wie auch praktisch mit einem neuartigen Konzept zur Strahldiagnose — der zerstörungsfreien Emittanzmessung für negative Ionenstrahlen. Bei H¯ Strahlen kann auf mechanische Bauteile verzichtet werden, wenn bei einem kleinen Teil der H¯ Ionen das zusätzliche, nur mit 0,754 eV schwach gebundene Elektron durch Photodetachment abgelöst wird. Die neutralisierten H¯ Ionen können magnetisch oder elektrostatisch von den Elektronen und den verbliebenen H¯ Ionen separiert werden. Insbesonders die Neutralteilchen bieten sich zur Bestimmung der Phasenraumverteilung des Ionenstrahls an, da der Impulsübertrag bei der Photoneutralisation für die vorliegende Anwendung vernachlässigbar ist. Die Detektion des Divergenzwinkels kann durch einen Szintillator mit einer CCD–Kamera erfasst werden. Ein Modell zur Berechnung der Anzahl der neutralisierten Teilchen ist unter der Annahme homogener Dichteverteilungen entwickelt worden, um Aussagen zu den Anforderungen an Lasersystem und Detektor zu machen. Dabei zeigt sich die besondere Eignung des Meßverfahrens für Strahlstöme und Strahlparameter, wie sie typischerweise nach einem RFQ vorliegen. Da im Gegensatz zur Schlitz–Schlitz Emittanzmessung wird hier die Winkeldetektion mit einem ortsauflösenden Szintillator durchgeführt. Daraus ergibt sich als neues Verfahren eine Schlitz–Punkt Abbildung. Im Vergleich zum Schlitz–Schlitz Messprinzip können damit mehr Informationen über die Phasenraumverteilung gewonnen werden. Um diese neue Abbildungsfunktion zu untersuchen, ist eine Methode zur Simulation der Winkeldetektion entwickelt worden. In den Simulationen ist angenommen worden, daß der Schlitz bzw. Laser analog zur Messung einer yy´ Emittanz entlang der y–Achse durch den Ionenstrahl gefahren wird, die ausgeschnittene Teilchenverteilung ist bis zum Ort des Szintillators transportiert worden. Dabei sind etliche Zusammenhänge der Abbildungsfunktion zwischen den 2dim Phasenraumprojektionen yy´ , xx´ und der Verteilung der neutralisierten Ionen auf dem Teilchendetektor aufgezeigt worden. Dabei läßt sich nachweisen, daß die Aberrationen aus der anderen transversalen Ebene (x–Ebene) die Verteilungsfunktion mit beeinflusst. Für die experimentellen Untersuchung der Photodetachment Strahldiagnose wurde eine Beamline aus Ionenquelle mit Dumpingsystem, differentiellem Pumptank und Linsensystem aufgebaut. Dabei wurde bei einer vorhandenen H¯ Quelle der Strom von anfänglich 70 mycroA auf 2,5 mA gesteigert. Das Dumpingsystem erwies sich als sehr effektiv und lenkte bis zur Nachweisgrenze alle zusätzlich extrahierten Elektronen aus dem Strahl aus. Die Komponenten und der gesamte Aufbau zur Photodetachment Strahldiagnose schließen den Dipol bzw. die Konstruktion der Vakuumkammer zur Ladungsseparation, die Auswahl eines geeigneten Szintillators und die Bestimmung der Laserstrahlparameter und dessen Strahlwegs mit ein. Bei den Experimenten zur Photoneutralisation konnte eindeutig das Meßsignal dem Photodetachment zugeordnet werden. Auch die Linearität des Szintillators konnte eindeutig gezeigt werden. Ebenfalls konnte die Beeinflussung der Einzellinsen auf den Ionenstrahl an Hand neutralisierter Teilchen gezeigt werden: Bei Vergrößerung der Brechkraft wurde der zunächst große Strahldruchmesser mit einem Intensitätsmaximum im Strahlkern zu einer hohlstrahlähnlichen Verteilung mit einem Peak in der Strahlmitte und am Strahlrand fokussiert. Bei weiterer Steigerung der Linsenspannung ließ sich die Intensität im Strahlrand wieder reduzieren. Durch die Veränderung der y–Position wurden Winkelprofile mit den zuvor gemessenen Schlitz–Schlitz Emittanzfiguren verglichen. Dabei konnte der Divergenzwinkel und auch die Lage des Strahlkerns im Rahmen der Meßgenauigkeit sehr gut wiedergegeben werden. Andererseits zeigten sich deutliche Unterschiede bei der Auswertung der Intensitäten. Dies ist zum Teil auf die schlechte Wiedergabe eines Holhlstrahls durch eine zweidimensionale Phasenraumprojektion yy´ zu erklären. Außerdem ist der Ionenstrahl durch die kleine Bauhöhe der Magnetkammer kollimiert worden, was den Strahl im Vergleich zu den vorherigen Schlitz–Schlitz Emittanzmessungen nachhaltig beeinflusst hat. Dagegen wiesen im direkten Vergleich, nämlich der zweidimensionalen, „wahren“ Ortsverteilung des Ionenstrahls am Szintillator mit den aufaddierten Neutralteilchen–Verteilungen, beide Verteilungen sehr ähnliche Muster auf. Die Messungen sind fast ausnahmslos an stark aberrationsbehafteten Ionenstrahlen durchgeführt worden. Dabei konnte die in den Simulationen der Abbildungseigenschaften gefundenen geschlossenen, achtförmigen Verteilungen unter Berücksichtigung der begrenzten Nachweisempfindlichkeit des Detektors sehr gut nachvollzogen werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christoph Gabor
URN:urn:nbn:de:hebis:30-52270
Place of publication:Frankfurt am Main
Referee:Ulrich RatzingerORCiD
Advisor:Ulrich Ratzinger
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2008/01/22
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/05/03
Release Date:2008/01/22
Page Number:142
First Page:1
Last Page:136
HeBIS-PPN:194399699
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht