Genetic analysis of salt adaptation in Methanosarcina mazei Gö1 : the role of abl, ota and otb genes

  • 1. M. mazei ist ein halotolerantes methanogenes Archäon und akkumuliert kompatible Solute als längerfristige Anpassung an erhöhte Osmolarität in der Umgebung. Bei intermediären Salzkonzentrationen (~ 400 mM NaCl) wird vorzugsweise α-Glutamat gebildet und bei höheren Salzkonzentrationen (~ 800 mM NaCl) wird Nε-Acetyl-ß-Lysin zusätzlich zu Alpha-Glutamat synthetisiert. 2. Eine Analyse der intrazellulären Solutezusammensetzung mittels NMR ergab, dass M. mazei Glycin-Betain als Osmolyt akkumulieren kann. Für die Aufnahme von Glycin-Betain konnten zwei putative Glycin-Betain-Transporter in M. mazei identifiziert werden, Ota und Otb. Ota steht für „osmoprotectant transporter A“ und Otb für „osmoprotectant transporter B“. Das Genom von M. mazei wurde, nachdem es vollstänidg sequenziert war, nach Genen durchsucht, die eine Rolle bei der Aufnhame von Glycin-Betain oder anderen kompabtiblen Solute spielen könnten. Dafür wurde die Sequenz eines Substratbindeproteins eines bekannten bakteriellen Glycin-Betain-Transporters, opuAC aus B. subtillis als Referenzsequenz verwendet. Hierbei konnte ein Homolog, otaC, in M. mazei identifiziert werden. otaC ist Teil eines Genclusters, welches für einen ABC-Transporter kodiert. otb wurde bei einer genomweiten Expressionsanalyse zur Salzadaptation von M. mazei identifiziert. Es wurden Gene eines putativen ABC-Transporters identifiziert, die unter Hochsalzbedingungen leicht induziert waren. Es stellte sich heraus, dass es sich hierbei um einen zweiten putativen Glycin-Betain-Transporter handelte. Otb gehört auch zur Familie der ABC-Transporter. Vergleichsanalysen zeigten, dass die beiden Transporter keine große Ähnlichkeit zueinander aufweisen. Die Funktion und Rolle der beiden ABC-Transporter, vor allem von Otb, war zu Beginn dieser Arbeit unklar. 3. Bei Analysen des intrazellulären Solutepools im Wildtyp von M. mazei stellte sich heraus, dass in Anwesenheit von Glycin-Betain die Konzentration von Glutamat und NE- Acetyl-ß-Lysin verringert war. Bei 400 mM NaCl reduzierte Glycin-Betain die Glutamat- Konzentration um 16% und bei 800 mM NaCl um 29%. Besonders deutlich zeigte sich der Einfluß von Glycin-Betain bei der Akkumulation von NE-Acetyl-ß-Lysin. Bei 400 mM NaCl reduzierte Glycin-Betain die Konzentration an NE-Acetyl-ß-Lysin um 60% und bei 800 mM NaCl um 50%. Der Einfluß von Glycin-Betain konnte auf verschiedenen Ebenen in M. mazei beobachten werden. Es konnte gezeigt werden, dass die relative Transkriptimenge von ota unter Hochsalzbedingungen zunimmt. Glycin-Betain reduzierte die Transkription von ota bei verschiedenen Salzkonzentrationen. Die relative Transkriptmenge an mRNA von ota wurde mittels quantitativer real-time PCR (qRT-PCR) quantifiziert und war bis zu 52% reduziert in Zellen, die in Gegenwart von Glycin-Betain gewachsen waren. Die Transkriptmenge von otb war unter den gleichen Bedingungen nicht beeinflusst und zeigte generell keine Zunahme mit der Salinität des Mediums. Des Weiteren konnte ein Effekt von Glycin-Betain auf Ebene der Transportaktivität von Ota gezeigt werden. Hier zeigte sich, dass Zellen, die bei 400 mM NaCl in Gegenwart von Glycin-Betain gezogen waren, eine geringere Transportaktivität aufweisen, als Zellen, die bei 400 mM NaCl ohne Glycin-Betain gewachsen waren. Die Transportaktivität war um 90% geringer. Es muss jedoch berücksichtigt werden, dass es sich bei den Zellen, die ohne Glycin-Betain gewachsen waren, um eine Nettoaufnahme von Glycin-Betain handelte. Im Gegensatz dazu, ist davon auszugehen, dass Zellen, die in Gegenwart von Glycin-Betain gewachsen waren, eine Austaschreaktion zwischen bereits vorhandenem intrazellulärem und extrazellulär angebotenem Glycin-Betain vornehmen. [Die dem letzten Punkt zugrundeliegenden Daten wurden von Silke Schmidt im Rahmen einer Diplomarbeit erhoben, die von mir mitbetreut wurde. Aus Gründen der vollständigen Darstellung des Projektverlaufes werden diese Daten mitaufgeführt.] 4. Zur weiteren Klärung der Rolle und Funktion der beiden putativen Glycin-Betain- Transporter Ota und Otb war es Ziel, Mutantenstudien durchzuführen. Eine Vorraussetzung für die Generierung von Mutanten ist, dass der Organismus auf Agarplatten wächst und Einzelkolonien von einer einzelnen Zelle ausgehend bildet. Dies ist ein wichtiger Punkt bei Methanosarcina spp., die Zellpakete, sogenannte Sarcinen bilden. Deshalb wurde zunächst nach den optimalsten Plattierungsbedingungen gesucht, unter denen M. mazei keine Sarcinen bildet und die Plattierungseffizienz am höchsten war. Die Plattierungseffizienz betrug im Durchschnitt 54%. Für das Einbringen von DNA in die Zellen wurde eine Liposomen-vermittelte Transformation getestet. Ein ähnliches Vorgehen war bereits für Methanosarcina acetivorans beschrieben, konnte bislang aber noch nicht erfolgreich für M. mazei Gö1 und andere Stämme von M. mazei angwendet werden. Erste Schritte zur Anpassung des Transformations-Protokolles beinhalteten das Testen von DOTAP verschiedener Hersteller, sowie die Konzentration an eingesetzter DNA. Das jeweilige Zielgen/Zieloperon, welches deletiert werden sollte, wurde durch eine pac-Kassette ersetzt. Diese kodiert für eine Puromycin-Transacetylase und verleiht dem Organismus Puromycin- Resistenz. Die pac-Kassette wurde von umgebenden Bereichen des Ziellocus flankiert und integrierte mit Hilfe dieser flankierenden Bereiche über doppelt-homologe Rekombination in das Genom. 5. Mit dem oben beschriebenen Verfahren wurden ota::pac- und otb::pac-Mutanten erzeugt und über Southern-Blot Analyse verifiziert. Eine erste Charakterisierung der Mutanten mittels qRT-PCR zeigte, dass auf mRNA-Ebene keine Transkripte von ota in M. mazei ota::pac oder otb in M. mazei otb::pac nachweisbar waren. Zusätzlich konnte auf Proteinebene das Substratbindeprotein OtaC in M. mazei ota::pac und OtbC in M. mazei otb::pac nicht über einen Antikörper gegen das jeweilige Substratbindeprotein nachgewiesen, was die erfolgreiche Deletion bestätigte. Erste phänotypische Charakterisierungen zeigten, dass das Wachstum von M. mazei ota::pac und M. mazei otb::pac unter Hochsalzbedingungen nicht beeinträchtigt und vergleichbar mit dem des Wildtyps war. Auch bei kälteren Wachstumstemperaturen von 22°C wuchsen die Mutanten ohne Phänotyp. 6. Radioaktive Transportstudien mit M. mazei otb::pac zeigten, dass diese Mutante, die noch ein funktionelles Ota besitzt, [14C]Glycin-Betain aufnehmen kann. Es stellte sich heraus, dass diese Mutante eine höhere Transportrate für Glycin-Betain aufwies, als der Wildtyp. Die Aufnahmerate war um einen Faktor 2 höher als beim Wildtyp. Zusätzlich konnten qRT-PCR Analysen zeigen, dass die relative Transkriptmenge an ota in der otb::pac-Mutante um einen Faktor 2 höher war, als im Wildtyp. Umgekehrt konnte dieser Effekt nicht beobachtet werden, d.h. eine erhöhte Transkriptmenge an otb in M. mazei ota::pac. Auf Proteinebene konnte beobachtet werden, dass die intrazelluläre Konzentration an OtaC in der Mutatne leicht höher war als im Wildtyp. Jedoch stellte sich heraus, dass die intrazelluläre Glycin-Betain-Konzentration bei 400 mM NaCl in der Mutante nicht erhöht war verglichen mit Wildtyp, sondern die Konzentrationen gleich waren. Bei höheren Salzkonzentrationen (800 mM NaCl) zeigte sich jedoch ein anderes Bild: die intrazelluläre Glycin-Betain-Konzentration war in der Mutante um 60% erhöht. Dies könnte auf die erhöhte Transportaktivität von M. mazei otb::pac zurückzuführen sein. Die Konzentration anderer kompatibler Solute wie Glutamat und NE-Acetyl-ß-Lysin waren in diesen Zellen bis zu 48% reduziert. In vorherigen Studien konnte gezeigt werden, dass heterolog überproduziertes Ota von M. mazei in E. coli MKH13, eine E. coli-Mutante, die keine Glycin-Betain-Transporter mehr besitzt, die Aufnahme von Glycin-Betain wieder herstellen konnte [die Daten von ota in E. coli MKH13 wurden in der bereits oben erwähnten Diplomarbeit von Silke Schmidt erhoben]. Zur Klärung der Funktion von Otb wurde der gleiche Versuch mit otb in E. coli MKH13 durchgeführt. Jedoch konnte eine heterologe Produktion von Otb aus M. mazei die Aufnahme von Glycin-Betain in E. coli MKH13 nicht wieder herstellen. Hierbei wurde über Western-Blot Analyse sichergestellt, dass Otb tatsächlich in der Membran vorhanden war. Auch Transportstudien mit der Mutante M. mazei ota::pac zeigten, dass diese Mutante kein [14C]Glycin-Betain mehr aufnehmen konnte. Es konnte auch keine Akkumulation von Glycin-Betain mittels NMR in dieser Mutante gemessen werden. Des Weiteren zeigte sich, dass die intrazellulären Konzentrationen an Glutamat und Nε-Acetyl-ß-Lysin bei 400 mM und 800 mM NaCl in der Mutante unbeeinflusst von der Glycin-Betain-Konzentration im Medium waren. Weitere Transportstudien mit M. mazei ota::pac zur Aufnahme von [14C]Cholin zeigten, dass dieses Molekül weder vom Wildtyp, noch von der Mutante aufgenommen wurde. Dieses Ergebnis wurde durch Messung des Solutepools mittels NMR bestätigt. Somit kann ausgeschlossen werden, dass Otb unter den gemessenen Bedingungen weder ein Glycin- Betain-Transporter noch ein Cholin-Transporter in M. mazei ist. Diese Beobachtungen belegen eindeutig, dass Ota der einzige funktionelle Glycin-Betain-Transporter in M. mazei ist, während die Rolle von Otb bislang noch ungeklärt ist. 7. Nε-Acetyl-ß-Lysin, das dominante kompatible Solut in M. mazei bei 800 mM NaCl, wird durch die Enzyme AblA, einer Lysin-2,3-Aminomutase und AblB, einer ß-Lysin- Acetyltransferase synthetisiert. In dieser Arbeit wurde eine Δabl::pac-Mutante generiert, um die Fragen zu klären, ob die beiden Enzyme vom postulierten abl-Operon kodiert werden und wenn ja, welchen Phänotyp eine Nε-Acetyl-ß-Lysin-freier-Mutante bei Salzstress zeigt. NMR-Analysen zeigten, dass in der abl::pac-Mutante kein Nε-Acetyl-ß-Lysin mehr nachweisbar war. Dies belegt, dass die Gene ablA und ablB und deren Genprodukte für die Synthese von NE-Acetyl-ß-Lysin in M. mazei essentiell sind. Unter Hochsalzbedingungen ist das Wachstum von M. mazei abl::pac im Vergleich zum Wildtyp deutlich verlangsamt. Dieses Ergebnis war unerwartet, da eine abl::pac-Mutante von Methanococcus maripaludis unter Hochsalzbedingungen nicht mehr wachsen konnte. Unter Niedrigsalz und bei intermediären Salzkonzentration war das Wachstum von M. mazei abl::pac nicht eingeschränkt und verhielt sich wie der Wildtyp. In Gegenwart von Glycin-Betain akkumulierte die abl::pac-Mutante von M. mazei unter Hochsalzbedingungen 2,4 mal mehr Glycin-Betain als der Wildtyp, um das Defizit im Solutepool auszugleichen und Wachstum bei Hochsalz zu ermöglichen. Dadurch war sie in der Lage, wieder wie der Wildtyp zu wachsen. 8. Der Verlust von NE-Acetyl-ß-Lysin wurde unter Hochsalzbedingungen durch erhöhte Konzentrationen an Glutamat und einem neuen kompatiblen Solut kompensiert. NMRAnalysen zeigten, dass es sich hierbei um Alanin handelte. Bis jetzt wurde die Verwendung von Alanin als kompatibles Solut noch nie beschrieben. Um sicherzustellen, dass Alanin als kompatibles Solut in M. mazei abl::pac dient, wurde die Konzentration bei verschiedenen Salzkonzentrationen gemessen. Die Konzentration an Alanin nahm mit steigender Salzkonzentration zu. Bei 800 mM NaCl war die Konzentration 12 fach erhöht verglichen mit der Konzentration bei 400 mM NaCl. Außerdem redzierte Glycin-Betain die Alanin- Konzentration bei 800 mM NaCl um 58%. Transportexperimente zeigten, dass M. mazei kein Alanin aus dem Medium aufnehmen kann. 9. Erste Analysen möglicher Synthesewege für Alanin zeigten, dass die Alanin- Dehydrogenase nicht auf Transkriptebene unter Hochsalzbedingungen induziert war und somit keine Rolle in der Synthese von Alanin als kompatibles Solut spielen dürfte. Es könnten jedoch Aminotransferasen eine Rolle bei der Biosynthese von Alanin spielen. Des Weiteren sind die Enzyme, die für die Synthese von Glutamat als kompatibles Solut verantwortlich sind, unbekannt. Dies gilt für alle bis jetzt untersuchten Organismen, die Glutamat als kompatibles Solut nutzen. In dieser Arbeit wurde versucht, mit Hilfe der abl::pac-Mutante, die erhöhte Glutamat-Mengen zum Osmoschutz produziert, der Frage nachzugehen, welche Gene/Enzyme eine Rolle spielen könnten bei der Synthese von Glutamat als kompatibles Solut. Dazu wurden unter Hochsalzbedingungen die Transkriptmengen verschiedener Genen, die an der Glutamat-Synthese beteiligt sein könnten, in der Mutante und im Wildtyp untersucht. Hierbei zeigte sich, dass mehrere Gene verschiedener Enzyme unter Hochsalzbedingungen in der Mutante leicht induziert waren. Eines dieser Enzyme ist die Glutaminsynthetase. Dieses Enzym ist für die Umsetzung von Glutamat zu Glutamin unter Verbrauch von ATP verantwortlich. M. mazei besitzt zwei Gene, die für eine putative Gluaminsynthetase kodieren. In M. mazei abl::pac ist unter Hochsalzbedingungen das Gen glnA2 im Vergleich zum Wildtyp (4,03 ± 1,14) leicht induziert (7,63 ± 2,2). Des weiteren konnte in der Mutante eine leichte Induktion von gltB1, gltB2 und gltB3 unter Hochsalz beobachtet werden. Diese Gene kodieren für die einzelnen Domänen einer Glutamatsynthase. Diese ersten Analysen geben einen Hinweis darauf, dass die Synthese von Glutamat als kompatibles Solut über eine gekoppelte Reaktion der Glutaminsynthetase und der Glutamatsynthase verlaufen könnte.

Download full text files

  • Dissertation_Regina_Saum.pdf
    eng

    Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung. Die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Regina Saum
URN:urn:nbn:de:hebis:30-63303
Referee:Volker MüllerORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2009/04/07
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/02/17
Release Date:2009/04/07
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung. Die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:416823629
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG