Condensing on metric spaces : modeling, analysis and simulation

  • In this work, we extend the Hegselmann and Krause (HK) model, presented in [16] to an arbitrary metric space. We also present some theoretical analysis and some numerical results of the condensing of particles in finite and continuous metric spaces. For simulations in a finite metric space, we introduce the notion "random metric" using the split metrics studies by Dress and al. [2, 11, 12].

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Mostafa Zahri
Referee:Malte Sieveking
Document Type:Doctoral Thesis
Date of Publication (online):2009/08/19
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/07/31
Release Date:2009/08/19
Tag:Condensing; collective intelligence; discrete dynamical system; forming a group; manifold and geodesic; multi-agents system; random metric
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht