Light unbound nuclear systems beyond the dripline

  • Starting from the first observation of the halo phenomenon 20 years ago, more and more neutron-rich light nuclei were observed. The study of unstable nuclear systems beyond the dripline is a relatively new branch of nuclear physics. In the present work, the results of an experiment at GSI (Darmstadt) with relativistic beams of the halo nuclei 8He, 11Li and 14Be with energies of 240, 280 and 305 MeV/nucleon, respectively, impinging on a liquid hydrogen target are discussed. Neutron/proton knockout reactions lead to the formation of unbound systems, followed by their immediate decay. The experimental setup, consisting of the neutron detector LAND, the dipole spectrometer ALADIN and different types of tracking detectors, allows the reconstruction of the momentum vectors of all reaction products measured in coincidence. The properties of unbound nuclei are investigated by reconstructing the relative-energy spectra as well as by studying the angular correlations between the reaction products. The observed systems are 9He, 10He, 10Li, 12Li and 13Li. The isotopes 12Li and 13Li are observed for the first time. They are produced in the 1H(14Be, 2pn)12Li and 1H(14Be, 2p)13Li knockout reactions. The obtained relative-energy spectrum of 12Li is described as a single virtual s-state with a scattering length of as = -22;13.7(1.6) fm. The spectrum of 13Li is interpreted as a resonance at an energy of Er = 1.47(13) MeV and a width of Gamma ~ 2 MeV superimposed on a broad correlated background distribution. The isotope 10Li is observed after one-neutron knockout from the halo nucleus 11Li. The obtained relative-energy spectrum is described by a low-lying virtual s-state with a scattering length as = -22.4(4.8) fm and a p-wave resonance with Er = 0.566(14) MeV and Gamma = 0.548(30) MeV, in agreement with previous experiments. The observation of the nucleus 8He in coincidence with one or two neutrons, as a result of proton knockout from 11Li, allows to reconstruct the relative-energy spectra for the heavy helium isotopes, 9He and 10He. The low-energy part of the 9He spectrum is described by a virtual s-state with a scattering length as = -3.16(78) fm. In addition, two resonance states with l 6= 0 at energies of 1.33(8) and 2.4 MeV are observed. For the 10He spectrum, two interpretations are possible. It can be interpreted as a superposition of a narrow resonance at 1.42(10) MeV and a broad correlated background distribution. Alternatively, the spectrum is being well described by two resonances at energies of 1.54(11) and 3.99(26) MeV. Additionally, three-body energy and angular correlations in 10He and 13Li nuclei at the region of the ground state (0 < ECnn < 3 MeV) are studied, providing information about structure of these unbound nuclear systems.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Yuliya AksyutinaGND
Referee:Joachim StrothORCiD, René ReifarthORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2009/11/11
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/08/14
Release Date:2009/11/11
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht