On dynamic breadth-first search in external-memory

  • We provide the first non-trivial result on dynamic breadth-first search (BFS) in external-memory: For general sparse undirected graphs of initially $n$ nodes and O(n) edges and monotone update sequences of either $\Theta(n)$ edge insertions or $\Theta(n)$ edge deletions, we prove an amortized high-probability bound of $O(n/B^{2/3}+\sort(n)\cdot \log B)$ I/Os per update. In contrast, the currently best approach for static BFS on sparse undirected graphs requires $\Omega(n/B^{1/2}+\sort(n))$ I/Os. 1998 ACM Subject Classification: F.2.2. Key words and phrases: External Memory, Dynamic Graph Algorithms, BFS, Randomization.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Ulrich MeyerORCiDGND
ArXiv Id:http://arxiv.org/abs/0802.2847
Parent Title (English):Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux)
Document Type:Article
Date of Publication (online):2010/01/22
Year of first Publication:2008
Publishing Institution:Universit├Ątsbibliothek Johann Christian Senckenberg
Release Date:2010/01/22
Tag:BFS; Dynamic Graph Algorithms; External Memory; Randomization
Page Number:10
First Page:551
Last Page:560
(c) U. Meyer ; CC Creative Commons Attribution-NoDerivs License
Source:Dans Proceedings of the 25th Annual Symposium on the Theoretical Aspects of Computer Science - STACS 2008, Bordeaux : France (2008)
Institutes:Informatik und Mathematik / Informatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoCreative Commons - Namensnennung-Keine Bearbeitung