Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells

  • Transcripts of NANOG and OCT4 have been recently identified in human t(4;11) leukemia and in a model system expressing both t(4;11) fusion proteins. Moreover, downstream target genes of NANOG/OCT4/SOX2 were shown to be transcriptionally activated. However, the NANOG1 gene belongs to a gene family, including a gene tandem duplication (named NANOG2 or NANOGP1) and several pseudogenes (NANOGP2-P11). Thus, it was unclear which of the NANOG family members were transcribed in t(4;11) leukemia cells. 5'-RACE experiments revealed novel 5'-exons of NANOG1 and NANOG2, which could give rise to the expression of two different NANOG1 and three different NANOG2 protein variants. Moreover, a novel PCR-based method was established that allows distinguishing between transcripts deriving from NANOG1, NANOG2 and all other NANOG pseudogenes (P2–P11). By applying this method, we were able to demonstrate that human hematopoietic stem cells and different leukemic cells transcribe NANOG2. Furthermore, we functionally tested NANOG1 and NANOG2 protein variants by recombinant expression in 293 cells. These studies revealed that NANOG1 and NANOG2 protein variants are functionally equivalent and activate a regulatory circuit that activates specific stem cell genes. Therefore, we pose the hypothesis that the transcriptional activation of NANOG2 represents a ‘gain-of-stem cell function’ in acute leukemia.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Irina Eberle, Birgit Pleß, Miriam Braun, Theodor DingermannORCiDGND, Rolf MarschalekORCiDGND
Parent Title (German):Nucleic Acids Research
Document Type:Article
Date of Publication (online):2010/11/12
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2010/11/12
First Page:5384
Last Page:5395
© The Author(s) 2010. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Source:Nucleic Acids Research, 2010, Vol. 38, No. 16, pp. 5384-5395, doi:10.1093/nar/gkq307
Institutes:Fachübergreifende Einrichtungen / Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (ZAFES)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoDeutsches Urheberrecht