Funktionelle Bildgebung des vegetativen Nervensystems : neue Ansätze zur fMRT-Messung des menschlichen Hirnstamms

Functional imaging of the autonomic nervous system : new approaches for fMRI measurements of the human brainstem

  • In den Neurowissenschaften führt die Erforschung des vegetativen Nervensystem (VNS) immer noch ein Schattendasein. Einer der wichtigsten Teile des VNS, der Hirnstamm, ist dabei besonders schlecht erforscht, obwohl er die Steuerzentren für Herzschlag, Blutdruckregulation, Atmung, Verdauung, und viele weitere lebenswichtige Funktionen beherbergt. Ein wichtiger Grund für diesen Umstand ist, dass die funktionelle Kernspintomographie (fMRT) sich in ihrer bisherigen Form nur bedingt für Messungen im Hirnstamm eignet. Ziel dieser Arbeit war es daher, neue Ansätze zur fMRT-Messung vegetativer Zentren im menschlichen Hirnstamm zu entwickeln. Nach einer Einführung in die Neuroanatomie sowie die physikalischen und physiologischen Grundlagen der strukturellen und funktionellen MRT werden im mittleren Teil der Arbeit die Entwicklung sowie der Test neuer Ansätze zur Hirnstamm-fMRT beschrieben. Dabei untersucht der Autor zunächst, welche grundlegenden Probleme einer konventionellen fMRT-Messung im Hirnstamm entgegenstehen. Es stellt sich heraus, dass alle hirnstamm-spezifischen Störquellen direkt oder indirekt auf den Herzschlag zurückzuführen sind. Aus den vorhandenen Ansätzen zur Korrektur solcher Störungen wird die Herzschlag-Taktung ausgewählt. Bei diesem Verfahren erfolgt die Aufnahme der fMRT-Bilder zeitlich gekoppelt an dem Herzschlag des Probanden, um sämtliche kardiogenen Rauschquellen zu unterdrücken. Anstelle des häufig verwendeten, aber statistisch problematischen Guimaraes-Verfahrens zur Korrektur der durch die Herzfrequenzvariabilität bedingten Schwankungen des MR-Signals wird in der vorliegenden Arbeit der die sog. Dual-Echo-Bildgebung verwendet. Dabei wird die konventionelle EPI-Sequenz (echo-planar imaging) dahingehend erweitert, dass pro Bild anstelle eines Echos zwei aufgenommen werden. Durch Quotientenbildung der beiden Bilder kann so der fluktuierende Teil des Signals entfernt werden. Beim Vergleich verschiedener Varianten der Quotientenbildung stellt sich ein neu entwickelter, exponentieller Ansatz als überlegen heraus. Danach werden die Auswirkungen verschiedener Methoden der Bewegungskorrektur und Schichtorientierung verglichen, um das Optimum für Messungen im Hirnstamm zu ermitteln. Nach Tests des neuen Verfahrens an verschiedenen fMRT-Datensätzen werden Empfehlungen für die Kombination der verschiedenen Parameter gegeben. Es zeigt sich, dass die Standardabweichung der fMRT-Bilder mit der neuen Methode im unteren Hirnstamm um 13% - 33% reduziert werden kann. Ein Sensitivitätstest an motorischen Hirnstammkernen, welche durch ein motorisches Paradigma aktiviert werden, zeigt, dass die jeweiligen Kerne in 85% - 95% der Fälle eindeutig identifiziert werden können. Im dritten Teil der Arbeit erfolgt die Anwendung der neuen Methode auf die Messung von Aktivierungen vegetativer Zentren. Hier wird als unkonventionellen Stimulus des vegetativen Nervensystems die Akupunktur verwendet. Dies geschieht u.a. mit der Zielsetzung, zur Aufdeckung des noch immer unbekannten Wirkmechanismus dieser Therapieform beizutragen. Als Akupunkturpunkt wird Pc6 am Handgelenk gewählt, da die Studienlage eindeutig dessen Effektivität bei der Behandlung von Übelkeit und Erbrechen sowie eine Beeinflussung der Magen-Peristaltik zeigt und die neuralen Zentren hierfür größtenteils im Hirnstamm lokalisiert sind. Der Autor stellt daher die Hypothese auf, dass die Akupunkturwirkung in diesem Fall über den Vagusnerv und dessen Hirnstammkern, den Nucleus dorsalis nervi vagi, vermittelt wird. Vor der Überprüfung dieser Hypothese erfolgt zunächst eine Methodenkritik der bisherigen Akupunktur-fMRT-Forschung. Anhand einer Gruppe von Studien, welche über Aktivierungen der Sehrinde bei Akupunktur visuell relevanter Punkte berichten, weist der Autor eine Reihe methodischer Probleme nach. Anhand einer eigenen Studie kann er mittels Independent Component Analysis (ICA) zeigen, dass die von den bisherigen Studien berichteten, visuellen Aktivierungen höchstwahrscheinlich nicht auf die Wirkung der Akupunktur zurückzuführen sind. Um einige der Probleme dieser Studien zu umgehen, entwickelt der Autor ein neues psychophysikalisches Verfahren, bei dem die Probanden während der Akupunktur kontinuierlich die Stärke der Nadelempfindung („DeQi“) auf einer visuellen Analogskala bewerten. Mit Hilfe dieses Verfahrens gelingt schließlich der Nachweis einer Hirnstamm-Aktivierung unter Akupunktur-Stimulation, deren Lokalisation mit der des Nucleus dorsalis nervi vagi vereinbar ist. Dies bestätigt die ursprüngliche Hypothese und zeigt gleichzeitig die Eignung des neuen Verfahrens für die Bildgebung vegetativer Hirnstammzentren.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Florian Beißner
URN:urn:nbn:de:hebis:30-74201
Referee:Wolfgang Schwarz
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/01/25
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/01/20
Release Date:2010/01/25
Tag:Nucleus dorsalis nervi vagi; laserakupunktur; methodenkritik
default mode network; fixed effects analysis; random effects analysis; resting state
GND Keyword:Funktionelle NMR-Tomographie; Hirnstamm; Vegetatives Nervensystem; NMR-Tomographie; Akupunktur; Neurophysiologie; Erbrechen; Nausea; Vagus
HeBIS-PPN:220033714
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 87.00.00 Biological and medical physics / 87.19.-j Properties of higher organisms / 87.19.L- Neuroscience / 87.19.lf MRI: anatomic, functional, spectral, diffusion
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 87.00.00 Biological and medical physics / 87.61.-c Magnetic resonance imaging / 87.61.Qr Functional imaging
Licence (German):License LogoDeutsches Urheberrecht