Quantum stochasticity and neuronal computations

  • The nervous system probably cannot display macroscopic quantum (i.e. classically impossible) behaviours such as quantum entanglement, superposition or tunnelling (Koch and Hepp, Nature 440:611, 2006). However, in contrast to this quantum "mysticism" there is an alternative way in which quantum events might influence the brain activity. The nervous system is a nonlinear system with many feedback loops at every level of its structural hierarchy. A conventional wisdom is that in macroscopic objects the quantum fluctuations are self-averaging and thus not important. Nevertheless this intuition might be misleading in the case of nonlinear complex systems. Because of a high sensitivity to initial conditions, in chaotic systems the microscopic fluctuations may be amplified upward and thereby affect the system’s output. In this way stochastic quantum dynamics might sometimes alter the outcome of neuronal computations, not by generating classically impossible solutions, but by influencing the selection of many possible solutions (Satinover, Quantum Brain, Wiley & Sons, 2001). I am going to discuss recent theoretical proposals and experimental findings in quantum mechanics, complexity theory and computational neuroscience suggesting that biological evolution is able to take advantage of quantum-computational speed-up. I predict that the future research on quantum complex systems will provide us with novel interesting insights that might be relevant also for neurobiology and neurophilosophy.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Peter JedličkaORCiDGND
Parent Title (English):Nature precedings
Publisher:Nature Publishing Group
Place of publication:London
Document Type:Conference Proceeding
Year of Completion:2009
Date of first Publication:2009/08/31
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Creating Corporation:Quantum Mind Conference 2007, Salzburg, Austria
Release Date:2010/01/27
Tag:Complex Systems; computational neuroscience; nonlinear dynamics; quantum biology
Page Number:32
This document is licensed to the public under the Creative Commons Attribution 3.0 License
Source:http://dx.doi.org/10.1038/npre.2009.3702.1 ; http://precedings.nature.com/documents/3702/version/1
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung 3.0