Fragmentationsdynamik von CO 2

Fragmentation dynamics of CO 2

  • Mit der vorliegenden Arbeit wurden zu ersten Mal die seit mehreren Jahren vorhergesagten dynamischen Aufbruchsmechanismen - der direkte, der sequentielle und der asynchrone Zerfall - in mehratomigen Molekülen kinematisch vollständig untersucht. Experimentell wurde hierfür ein Kohlenstoffdioxid-(CO2)-Molekül in langsamen Ion-Molekül Stößen dreifach ionisiert, indem die Elektronen des Targets von den langsamen, hochgeladenen Projektilionen (Ar8+-Ionen) eingefangen wurden. Die Untersuchung des Zerfalls des CO2-Ions in die einfach geladenen ionischen Fragmente C+ + O+ + O+ zeigte, dass bei diesem Zerfall das Projektilion vornehmlich einen positiven Ladungszustand von q = 6 und nicht den zunächst erwarteten Ladungszustand q = 5 aufweist. Dies ist darauf zurückzuführen, dass die eingefangenen Elektronen oftmals elektronisch hoch angeregte Zustände im Projektil populieren und demnach im weiteren Verlauf über Autoionisationsprozesse dieses auch wieder verlassen können. Ähnliche Autoionisationsprozesse können auch im Target ablaufen, treten dort jedoch mit einer geringeren Wahrscheinlichkeit auf, da der Wirkungsquerschnitt für Autoionisationsprozesse im Target um einen Faktor 1,3 kleiner ist als für Autoionisationen im Projektil. Zusätzlich zeigte die Untersuchung der Stoßdynamik, dass der dreifache Elektroneneinfang primär bei einer parallelen Orientierung der Molekülachse zur Projektilstrahlachse auftritt. Eine weitere Abhängigkeit der Stoßdynamik zum Beispiel vom Stoßparameter beziehungsweise vom Streuwinkel konnte nicht beobachtet werden. Durch die koinzidente Messung aller vier Reaktionsteilchen konnte der Kanal Ar8+ + CO2 --> Ar6+ + C+ + O+ + O+ eindeutig bestimmt werden und die Reaktionsdynamik des CO2-Ions nach dem Stoß analysiert werden. Dabei tritt deutlich der direkte Aufbruch hervor, bei welchem die drei einfach geladenen Ionen sich rein aufgrund ihrer Coulombkräfte voneinander abstoßen. Bei einer solchen Coulombexplosion bleibt dem Molekülion kaum Zeit, um eine molekulare Schwingung zu vollführen. Neben diesem schnellen Zerfall konnten aber auch jene Zerfälle beobachtet werden, bei denen das Molekülion zuerst molekular schwingt und dann zu einem späteren Zeitpunkt in die ionischen Fragmente zerfällt. Dieser letztere Zerfallsprozess gehört zu den sogenannten asynchronen Zerfallsmechanismen. Er stellt einen Zwischenprozess zwischen dem reinen 1-Stufen-Prozess wie dem direkten Aufbruch und dem reinen 2-Stufen-Prozess dar. Bei solchen sequentiellen 2-Stufen Prozessen fragmentiert das CO2-Molekül im ersten Schritt in ein O+- und ein CO2+-Ion. Im zweiten Schritt dissoziiert dann das CO2+-Fragment, nachdem es nahezu keine Wirkung der Coulombkräfte des ersten Sauerstoffions mehr spürt, in ein C+- und ein O+-Ion. Durch die Darstellung der Schwerpunktsimpulse der Fragmente in Dalitz- und Newton-Diagrammen ist es mit dieser Arbeit erstmals gelungen diesen sequentiellen Prozess experimentell eindeutig nachzuweisen. In der weiteren Analyse konnte gezeigt werden, dass über die im System deponierte Energie, welche über die kinetische Energie der Fragmente bestimmt wird, die verschiedenen Reaktionsmechanismen direkt kontrolliert werden können. Speziell bei Energien unterhalb von 20 eV wurde gezeigt, dass es keine Potentialflächen gibt, die über einen direkten bzw. simultanen Aufbruch zu dem Endzustand C+ + O+ + O+ führen. Bei mehratomigen Molekülen erweist sich das Treffen detaillierter Aussagen über mögliche Dissoziationskanäle ohne die genaue Kenntnis der Lage der Potentialflächen und den Übergängen zwischen diesen als äußerst schwierig. Selbst bei genauer Kenntnis der Lage und Form der Potentialflächen, ist es aufgrund der hohen Dichten innerhalb der Übergangsbereiche der Potentialflächen nahezu unmöglich, den Verlauf der Dissoziationskanäle zu verfolgen. Mit dieser Arbeit ist es gelungen, die verschiedenen Reaktionskanäle ohne die Existenz von Energiepotentialflächen eindeutig zu identifizieren. Außerdem konnte gezeigt werden, dass die Energie, die während des Stoßes im Molekül deponiert wird, eine Schlüsselgröße darstellt, mit welcher die Fragmentationskanäle direkt kontrolliert werden können.
  • Fragmentation of highly charged molecular ions or clusters consisting of more than two atoms can proceed in an onestep synchronous manner where all bonds break simultaneously or sequentially by emitting one ion after the other. We separated these decay channels for the fragmentation of triply cahrged CO2 ions by measuring the momenta of the ionic fragments. We show that the total energy deposited in the molecular ion is a control parameter which switches between three distinct fragmentation pathways: the sequential fragmentation in which the emission of an O+ ion leaves a rotating CO2+ ion behind that fragments after a time delay, the Coulomb explosion and an in-between fragmentation - the asynchronous dissociation. These mechanisms are directly distinguishable in Dalitz plots and Newton diagrams of the fragment momenta. The triply charged CO2 ions are produced by multiple electron capture in collisions with 3.2 keV/u Ar8+ ions.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nadine Neumann
URN:urn:nbn:de:hebis:30-77847
Referee:Reinhard DörnerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/07/06
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/06/09
Release Date:2010/07/06
Tag:Coulombexplosion; Over-Barrier Modell; Reaktionsmikroskop; kaltes Gastarget
3-atomic-heteronuclear molecule; COLTRIMS; Electron capture; Ion-Molecule collisions
GND Keyword:Polyatomare Verbindungen; Molekularbewegung; Elektronenanlagerungsreaktion; Molekülstoß; Ion-Molekül-Stoß; Kleines Molekül; Kohlenstoffmolekül
HeBIS-PPN:224800515
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:30.00.00 ATOMIC AND MOLECULAR PHYSICS / 34.00.00 Atomic and molecular collision processes and interactions (for atomic, molecular, and ionic collisions in plasma, see 52.20.Hv; for atoms and molecules of astrophysical interest, see 95.30.Dr, Ft; see also 98.38.Bn and 98.58.Bz in interstellar media in as / 34.50.-s Scattering of atoms and molecules / 34.50.Fa Electronic excitation and ionization of atoms (including beam-foil excitation and ionization)
30.00.00 ATOMIC AND MOLECULAR PHYSICS / 34.00.00 Atomic and molecular collision processes and interactions (for atomic, molecular, and ionic collisions in plasma, see 52.20.Hv; for atoms and molecules of astrophysical interest, see 95.30.Dr, Ft; see also 98.38.Bn and 98.58.Bz in interstellar media in as / 34.50.-s Scattering of atoms and molecules / 34.50.Gb Electronic excitation and ionization of molecules
30.00.00 ATOMIC AND MOLECULAR PHYSICS / 34.00.00 Atomic and molecular collision processes and interactions (for atomic, molecular, and ionic collisions in plasma, see 52.20.Hv; for atoms and molecules of astrophysical interest, see 95.30.Dr, Ft; see also 98.38.Bn and 98.58.Bz in interstellar media in as / 34.70.+e Charge transfer (for charge transfer in biological systems, see 82.39.Jn in physical chemistry)
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht