Investigation of three accessory subunits of complex I from Yarrowia lipolytica

  • The nicotinamide-adenine-dinucleotide (NADH):ubiquinone oxidoreductase (complex I) from the strictly aerobic yeast Y. lipolytica contains at least 26 “accessory” subunits however the significance of most of them remains unknown. The aim of this study was to characterize the role of three accessory subunits of complex I, recently identified: two mitochondrial acyl carrier proteins, ACPM1 and ACPM2 and a sulfurtransferase (st1) subunit. ACPMs are small (approx. 10 kDa) acidic proteins that are homologous to the corresponding central components of prokaryotic fatty acid synthase complexes. Genomic deletions of the two genes ACPM1 and ACPM2 resulted in strains that were not viable or retained only trace amounts of assembled mitochondrial complex I, respectively, as assessed using two-dimensional blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS) PAGE. This suggested different functions for the two proteins that despite high similarity could not be complemented by the respective other homolog still expressed in the deletion strains. To test whether complex I was affected by deletion of the ACPM2 gene, its activities in mitochondrial membranes were measured. Consequently, specific inhibitor sensitive dNADH: decylubiquinone (DBQ) oxidoreductase activity was lost completely and a strong decrease in dNADH: hexa-ammine-ruthenium (HAR) oxidoreductase activity was measured. Remarkably, the same phenotypes were observed if just the conserved serine carrying the phosphopantethein moiety was exchanged with alanine. Although this suggested a functional link to the lipid metabolism of mitochondria, using HPLC chromatography no changes in the lipid composition of the organelles were found. Proteomic analysis revealed that both ACPMs were tightly bound to purified mitochondrial complex I. Western blot analysis revealed that the affinity tagged ACPM1 and ACPM2 proteins were exclusively detectable in mitochondrial membranes but not in the mitochondrial matrix as reported for other organisms. Hence it has been concluded that the ACPMs can serve all their possible functions in mitochondrial lipid metabolism and complex I assembly and stabilization as subunits bound to complex I. A protein exhibiting rhodanese (thiosulfate:cyanide sulfurtransferase) activity was found to be associated with homogenous preparation of complex I. From a rhodanese deletion strain, functional complex I that lacked the additional protein but was fully assembled and displayed no functional defects or changes in EPR signature was purified. In contrast to previous suggestions, this indicated that the sulfurtransferase associated with Y. lipolytica complex I is not required for assembly of its iron–sulfur clusters.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Krzysztof Dobrynin
URN:urn:nbn:de:hebis:30-78070
Referee:Bernd LudwigGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2010/07/09
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/06/24
Release Date:2010/07/09
HeBIS-PPN:224923021
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht