Fluktuationsspektroskopie an organischen Ladungstransfersalzen

  • Quasi-zweidimensionale organischen Ladungstransfersalze weisen gewisse Analogien zu den Hochtemperatur-Kupratsupraleitern (HTSL) auf. Zu nennen ist einerseits der ähnliche schichtartige Aufbau, wobei sich leitfähige und isolierende Ebenen abwechseln. Zum anderen liegt der antiferromagnetische Grundzustand in direkter Nachbarschaft zur Supraleitung und bei höheren Temperaturen wird ebenfalls die Entstehung einer Pseudo-Energielücke diskutiert. Im Gegensatz zu den HTSL können die elektronischen Eigenschaften der organischen Ladungstransfersalze jedoch leicht durch äußere Parameter wie hydrostatischen bzw. chemischen Druck - die Verwendung verschiedener Anionen X läßt sich in einem verallgemeinerten Phasendiagramm ebenfalls auf die Achse W/U abbilden, siehe Abschn. 4.2 - oder moderate Temperaturen beeinflußt werden. In den quasi-zweidimensionalen K-(BEDT-TTF)2X-Salzen ist bspw. ein moderater Druck p ~ 250 bar ausreichend, um das antiferromagnetisch-isolierende System (X=Cu[N(CN)2]Cl) auf die metallische Seite des Phasendiagramms zu verschieben, wobei dann im Grundzustand Supraleitung auftritt (Tc ~ 12,8 K). Eine Dotierung wie bei den HTSL und die damit einhergehende unerwünschte Unordnung ist nicht notwendig um einen Isolator-Metall-übergang zu induzieren. Demnach sind die experimentellen Anforderungen im Vergleich zu anderen stark korrelierten Elektronensystemen auf relativ einfache Weise zu realisieren. Auch das macht die organischen Ladungstransfersalze zu idealen Modellsystemen, um fundamentale Konzepte der theoretischen Festkörperphysik zu studieren, wovon einige bislang lediglich von akademischem Interesse waren. Erstmalig wird in dieser Arbeit die Fluktuationsspektroskopie als experimentelle Methode angewendet, um die Dynamik des TT-Elektronensystems in den quasi-zweidimensionalen organischen Ladungstransfersalzen K-(BEDT-TTF)2X bei niedrigen Frequenzen zu studieren. Ziel ist es, Informationen über die Temperatur-, Druck- und Magnetfeld-Abhängigkeit der spektralen Leistungsdichte des Widerstandsrauschens und damit über die Dynamik der Ladungsfluktuationen zu gewinnen. Insbesondere in der Nähe korrelationsgetriebener Ordnungsphänomene spielt die Dynamik der Ladungsträger eine entscheidende Rolle. Auch die Kopplung des elektronischen Systems an bestimmte strukturelle Anregungen hat Einfluß auf das Widerstandsrauschen. Zu Beginn wird eine kurze Einführung in die Signalanalyse gegeben und daran anschließend werden verschiedene Arten des Rauschens in Festkörpern dargestellt (Kap. 1). Einige der für diese Arbeit relevanten Ordnungsphänomene werden in Kap. 2 in knapper Form eingeführt, wobei auf die dynamischen Eigenschaften in der Nähe eines Glasübergangs etwas ausführlicher eingegangen wird. Nach der Vorstellung der eingesetzten Meßmethoden, des Versuchsaufbaus und der Probenkontaktierung (Kap. 3) werden die experimentellen Ergebnisse an den K-(BEDT-TTF)2X-Salzen in Kap. 4 ausführlich diskutiert.
  • Quasi-twodimensional organic charge-transfer salts show certain analogies to the High-Temperature Cuprate Superconductors (HTSC), e.g., the layered structure where conducting and insulating sheets do alternate as well as the direct proximity of the antiferromagnetic insulating ground state to the superconducting phase. At higher temperatures the formation of a pseudo-gap in the density of states is discussed also. In contrast to the HTSC the electronic properties of the organic charge-transfer salts can be easily influenced by external parameters such as hydrostatic or chemical pressure - in a generalized phase diagram the usage of different anions X can be mapped on the axis W/U as well, see Sec. 4.2 - or moderate temperatures. In the quasi-twodimensional K-(BEDT-TTF)2X salts, e.g., a moderate pressure of p ~ 250 bar is sufficient to shift the antiferromagnetic-insulating system (X=Cu[N(CN)2]Cl) to the metallic side of the phase diagram showing even superconductivity below a critical temperature of Tc ~ 12.8 K. Doping as in the HTSC and the undesirable disorder accompanied with it is not necessary to induce a metal-to-insulator transition. Therefore the experimental requirements are more easily met in this class of materials compared to other strongly correlated electron systems. All this makes the organic charge-transfer salts ideal model systems to study fundamental concepts of theoretical solid state physics some of which have been of academical interest only so far. In this work fluctuation spectroscopy has been used for the first time to investigate the low-frequency dynamics of the TT-electron system in the quasi-twodimensional organic charge-transfer salts K-(BEDT-TTF)2X with the aim to gain information about the temperature, pressure and magnetic field dependence of the power spectral density of the resistance noise and therefore about the dynamics of the charge carrier fluctuations. Especially in the vicinity of correlation driven ordering phenomena the dynamics of the charge carriers play an important role. Additionally, the coupling of the electronic system to certain structural excitations influences the resistance noise. At the beginning a short introduction to signal analysis is given, followed by a description of different kinds of noise in solids (Chap. 1). Some of the ordering phenoma relevant for this work are briefly introduced in Chap. 2 in which the dynamical properties near a glass transition are discussed in more detail. After the presentation of the applied measuring techniques, the experimental setup, and the sample contacting (Ch. 3), the experimental results on the K-(BEDT-TTF)2X salts are discussed extensively in Chap. 4.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jens Brandenburg
URN:urn:nbn:de:hebis:30-102478
Referee:Jens MüllerORCiDGND, Michael Lang
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/05/04
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/04/15
Release Date:2011/05/04
HeBIS-PPN:246996285
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht