Multivalente Chelatoren zur Organisation von Proteinen in Mikro- und Nanodimensionen

  • Dynamische Proteininteraktionen sind die Grundlage biologischer Prozesse, ihr korrekter Ablauf ist essentiell für die intakte Physiologie aller Organismen. Die Aufklärung der Struktur und Funktion von Proteinen inklusive ihrer komplexen Interaktionen, ist entscheidend für das Verständnis biologischer Prozesse. Methoden zur Untersuchung von Protein-Interaktionen sind in der Regel auf die Modifikation von Proteinen angewiesen. Zum Einen ist die selektive Markierung von Proteinen mit spektroskopischen Sonden – insbesondere mit Fluorophoren – ein wichtiger Ansatz zur in vivo und in vitro Interaktionsanalyse. Zum Anderen gewinnen festphasenbasierte Analysemethoden zunehmend an Bedeutung. Multivalente Chelatoren (MCH) bieten vielseitige Möglichkeiten, rekombinante Proteine reversibel an spektroskopische Sonden oder Oberflächen anzubinden und haben dadurch ein enormes Potential für Anwendungen zur funktionalen Charakterisierung von Proteinen. Ziel dieser Arbeit war es, die Energetik und Dynamik der Interaktion von MCH mit Oligohistidinen zu charakterisieren, um diese insbesondere zur Organisation von Proteinen in Mikro- und Nanostrukturen einzusetzen. Die Interaktion der MCH mit Histidin-Tags unterschiedlicher Länge und Sequenz wurde in Lösung und an Oberflächen charakterisiert. Es zeigte sich, dass die zunehmende Länge und die Redundanz auf Seiten des Histidin-Tags in einer erhöhten Affinität resultierten. Das Einführen einzelner Spacer-Aminosäuren resultierte hingegen in einer drastischen Reduktion der Komplexstabilität. Ein Alanin-Scanning zeigte, dass vor allem die zentralen Histidine besonders wichtig für eine stabile Bindung sind. Dieser Effekt lässt sich dadurch erklären, dass es sich bei der MCH-Oligohistidin-Interaktion um einen äußerst dynamischen Prozess handelt, bei dem die Metallkoordinationsstellen mit ständig wechselnden Histidinen interagieren. Diese Permutation erhöht die Entropie des Komplexes, und ist somit Grund für die erhöhte Affinität mit steigender Redundanz des Histidin-Tags. Anhand von Chelator-Dichte-Arrays konnte gezeigt werden, dass die Stabilität der Bindung von Histidin-getagten Proteinen nicht nur mit der Multivalenz der Chelatoren, sondern auch mit der MCH-Dichte ansteigt. In Kompetitionsexperimenten mit Hexa- und Dekahistidinen auf den MCH-Dichte-Arrays wurden veränderte Stabilitäten beobachtet. Die Stabilität von H6 ver5. veringert sich in Anwesenheit von H10, wobei sich die scheinbare Affinität von H10 in Anwesenheit von H6 erhöht. Dies wird auf die gleichzeitige Interaktion mit verschiedenen MCH-Molekülen auf der Oberfläche, die Oberflächenmultivalenz, zurückgeführt. Um diesen Effekt anhand von MCHMolekülen mit definiertem Abstand zu untersuchen, wurde ein Tris-NTABiotin-Konjugat (BTTris-NTA) hergestellt und auf Streptavidin-Oberflächen bzw. fluoreszenzmarkiertem Streptavidin eingesetzt. Echtzeit TIRFS-RIf-Kompetitionsexperimente zeigten eine veränderte Bindungskinetik für H6 in Anwesenheit von H10, welche darauf zurückzuführen ist, dass H6 aktiv durch H10 verdrängt wird. Dieser Effekt ist offenbar auf die dynamische Interaktion des Oligohistidins mit multiplen Chelatoren auf der Oberfläche zurückzuführen, welche den aktiven Austausch von H6 gegen H10 ermöglicht. Sowohl auf Oberflächen als auch in Lösung wurden für die Interaktion von Streptavidin-gebundenem BTTris-NTA mit Oligohistidinen um Faktor 3-5 erhöhte Affinitäten, im Vergleich zu freiem Tris-NTA, festgestellt. Interaktionsanalysen in Lösung zeigten maximale Komplex-Stöchiometrien von 1:2 für die Interaktion von Streptavidin-BTTris-NTA mit Oligohistidinen. Diese Stöchiometrien sowie die erhöhte Affinität lassen sich durch die gleichzeitige Interaktion von zwei benachbarten an Streptavidin gebundenen BTTris-NTA-Molekülen mit einem Oligohistidin erklären. Die räumliche Nähe der Tris-NTA-Moleküle erhöht die Redundanz auf Seiten des Chelators, was sich wiederum positiv auf die Entropie auswirkt und damit zu einer erhöhten Affinität führt. Diese Ergebnisse bestätigen den postulierten Effekt der Oberflächenmultivalenz. Es wurde gezeigt, dass BTTris-NTA die reversible Biotinylierung Histidingetagter Proteine ermöglicht, und damit eine Brücke zwischen den zwei am meisten eingesetzten Werkzeugen der Biochemie, dem Histidin-Tag und dem Biotin-(Strept)Avidin-System, schlägt. BTTris-NTA findet in verschiedenen Bereichen Anwendung: zur Umwandlung kommerzieller (Strept)Avidin-Oberflächen in Tris-NTA-Oberflächen, in Phage-Display-Screenings und Western Blot Analysen sowie zur Markierung von Rezeptoren auf Zelloberflächen. Die Biotinylierung über BTTris-NTA ermöglicht es zudem, auch Proteine geringer Konzentrationen (<10 nM) effizient auf Streptavidinoberflächen zu immobilisieren. Diese Selbstassemblierung Histidin-getagter Proteine wurde zur Organisation von Proteinen auf Oberflächen in Mikro- bis Nanometer-Dimensionen genutzt.

Download full text files

  • Dissertation_Annett_Reichel_.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Annett Reichel
URN:urn:nbn:de:hebis:30-94025
Referee:Jacob PiehlerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/03/23
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/09/10
Release Date:2011/03/23
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:425181693
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG