Structural basis of Na+-independent and cooperative transport in the L-carnitine/gamma-butyrobetaine antiporter CaiT

  • Der L-Carnitin/gamma-Butyrobetain Antiporter CaiT ist ein Mitglied der Betain/Carnitin/Cholin Transporter (BCCT) Familie. Sekundärtransporter der BCCT Familie transportieren Substrate, die eine positiv-geladene quartäre Ammoniumgruppe besitzen. CaiT besteht aus 504 Amiosäuren und besitzt ein moleculares Gewicht von etwa 56 kDa. In Enterobakterien wie Escherichia coli, Proteus mirabilis und Salmonella typhimurium wird die Expression des caiTABCDE Operons unter anaeroben Bedingungen induziert. Unter diesen Bedinungen ist CaiT der Haupttransporter des Betain-Derivates L-Carnitin. In Enterobakterien wird L-Carnitin unter anaeroben Bedingungen aufgenommen und dehydratisiert wobei Crotonobetain ensteht. Crotonobetain wird anschließend zum Endprodukt gamma-Butyrobetain reduziert. Gamma-Butyrobetain ist das Gegensubstrat, das aus der Zelle hinaustransportiert wird, wenn L-Carnitin in die Zelle aufgenommen wird. Der Austauschmechanismus von LCarnitin gegen gamma-Butyrobetain geschieht ohne das Vorhandensein eines elektrochemischen Gradients, d.h. CaiT ist sowohl H+- als auch Na+-unabhängig. Ein Ziel dieser Arbeit war es die drei-dimensionale (3D) Struktur von CaiT mittels Röntgenstrukturanalyse zu lösen. Weiterhin sollten mit Hilfe der 3D-Struktur und funktionellen Studien detailiertere Erkenntnisse über den kationenunabhängigen Antiportmechanismus von CaiT ermittelt werden. Im Rahmen dieser Arbeit wurden die 3D-Röntgenkristallstrukturen von drei CaiT-Homologen der Enterobakterien P. mirabilis (PmCaiT), E. coli (EcCaiT) und S. typhimurium (StCaiT) mittels molekularem Ersatz (engl.: molecular replacement, MR) mit einem Alanin-Model des CaiT verwandten Na+/Glycinbetain Symporters BetP gelöst. PmCaiT konnte mit einer Auflösung von 2.3 Å gelöst werden. Das Protein kristallisierte in der Kristallraumgruppe H3, mit drei Molekülen in der asymmetrischen Einheit (engl.: asymmetric unit, AU). Die drei PmCaiT-Moleküle ordneten sich innerhalb der AU um eine kristallographische dreifach Symmetrieachse an. EcCaiT wurde mittels MR mit einem Alanin-Model von PmCaiT bei einer Auflösung von 3.5 Å gelöst. EcCaiT kristallisierte in der Kristallraumgruppe P32, ebenfalls mit drei Molekülen in der AU, jedoch ohne kristallographische Symmetry. Während der Verfeinerung des EcCaiT-Models wurde eine strenge dreifache nichtkristallographische Symmetry (engl.: non-crystallographic symmetry, NCS) angewandt. StCaiT, das ebenfalls mittels MR mit einem Alanin-Model von PmCaiT, aber bei einer Auflösung von 4.0 Å gelöst wurde, kristallisierte in der Kristallraumgruppe P65, ebenfalls mit drei StCaiT-Molekülen in der AU, ohne kristallographische Symmetry. Bei der Verfeinerung des StCaiT-Modells wurde wie bei EcCaiT eine strenge NCS angewandt. Da die Auflösung von 4.0 Å bei StCaiT zu niedrig ist um detailierte moleculare Erkenntnisse zu gewinnen, wurden Protein- sowie Substratinteraktionen nur an den Strukturen von PmCaiT und EcCaiT analysiert. Alle drei CaiT-Homologe weisen jedoch einen ähnlichen strukturellen Aufbau auf. In der Röntgenkristallstruktur bildet CaiT ein symmetrisches Trimer, das über ionische und polare Wechselwirkungen zwischen den Protomeren stabilisiert wird. Der trimere Oligomerisierungszustand von CaiT in Detergenzlösung sowie in zweidimensionalen Lipidmembrankristallen wurde bereits in früheren Arbeiten gezeigt. Jedes der drei CaiT-Protomere besteht aus zwölf Transmembranhelices (TMH), die N- und C-terminalen Domänen des Proteins befinden sich auf der cytoplasmatischen Seite. Zehn der TMH bilden zwei invertierte Wiederholungseinheiten aus jeweils fünf TMH. Die erste Einheit besteht aus den TMH 3 – 7, die invertierte zweite Einheit besteht aus den TMH 8 – 12. Beide Wiederholungseinheiten sind strukturell nahezu identisch und lassen sich fast vollständig übereinanderlegen, jedoch weisen die Aminosäuren der beiden Einheiten keine signifikante Sequenzidentität auf. Die ersten beiden Helices der Wiederholungseinheiten, die TMH 3 – 4 und die TMH 8 – 9, bilden ein antiparalleles vier-Helix-Bündel, in dem in CaiT zwei Substratbindestellen lokalisiert sind. Eine derartige Transporterarchitektur wurde erstmals in der Struktur des Na+/Alanin Symporters LeuTAa des thermophilen Bakteriums Aquifex aeolicus gezeigt. Bislang wurden, inklusive CaiT, sieben Sekundärtransporterstrukturen gelöst, die diese LeuT-Transporterarchitektur aufweisen. Ungewöhnlich dabei ist, dass diese sieben Sekundärtransporter fünf verschiedenen Transporterfamilien angehören und eine Verwandschaft auf Basis der Aminosäuren nicht zu finden ist. Da jedoch die tertiäre Struktur dieser Tansporter konserviert ist, kann davon ausgegangen werden, dass sie alle von einem Urprotein entstanden sind, welches zunächst aus fünf TMH bestanden haben muss. Im Laufe der Evolution hat sich das Urgen des Urproteins zunächst dupliziert und die weitere Evolution hat zwar die Aminosäuresequenz verändert und den Umweltbedingungen angepasst, jedoch ist die tertiäre Struktur erhalten geblieben. Da sich die tertiäre Struktur der sieben Sekundärtransporter so stark ähnelt, ist zu vermuten, dass auch der Transportmechanismus ähnlich, jedoch nicht identisch ist. Nach dem strukturellen Aufbau der Transporter, der Lage der Substratbindestellen in den jeweiligen Transportern und der Tatsache, dass es sich bei diesen Proteinen um Membranproteine handelt, wurde ein Transportmechanismus aufgestellt, in dem die Bindestelle des zu transportierende Substrats alternierend zu beiden Seiten der Membran zugänglich ist, ohne jedoch jemals den Substratweg innerhalb des Proteins vollständig zu öffnen. Dieser Mechanismus wurde als “alternating access mechanism” beschrieben. Anhand der unterschiedlichen Zustände, in denen einige der Transporter kristallisierten, kann abgeleitet werden, welche Konformationsänderungen erforderlich sind um das Substrat von einer Seiter der Membran auf die andere zu transportieren. Bisher kristallisierten einzelne der sechs Transporter in der nach außen gerichteten offenen Form, der nach außen gerichteten Form, in der die Substratbindestelle jedoch nicht mehr zugänglich ist, in einer Form, die keine Öffnungspräferenz der Substratbindestelle zu einer Seite der Membran hat und in der nach innen gerichteten Form, in der die Substratbindestelle jedoch nicht geöffnet ist. CaiT kristallisierte in der noch fehlenden Konformation, der nach innen gerichteten Form, in der die Substratbindestelle zugänglich ist. Mit dieser noch fehlenend Konformation kann der Transportzyklus des “alternating access mechanism” vollständig beschrieben werden. Alle drei CaiT-Homologe kristallisierten in der nach innen gerichteten, offenen Konformation. Im Gegensatz zur EcCaiT-Struktur kristallisierte PmCaiT in der substratungebundenen Form. In der StCaiT-Struktur konnte aufgrund der niedrigen Auflösung kein Substrat nachgewiesen werden. In der EcCaiT-Struktur sind zwei gamma-Butyrobetain-Moleküle gebunden. Das erste Molekül wurde in der zentralen Substratbindestelle, der sogenannten Tryptophan-Box bestehend aus vier Tryptophanen, im Zentrum des Protein lokalisiert. Das zweite gamma-Butyrobetain-Molekül wurde in einer Vertiefung an der extrazellulären Proteinoberfläche gefunden. Beide Substrate werden hauptsächlich über Kation-Pi-Interaktionen zwischen der positiv geladenen quatären Ammoniumgruppe des Substrats und des Pi-Elektronensystems der Tryptophane in den jeweiligen Bindestellen gebunden. Eine besondere Eigenschaft von CaiT ist der H+- bzw. Na+-unabhängige Substrattransport. Die CaiT-Struktur erklärt warum kein zusätzliches Kation benötigt wird um Substrat zu binden oder zu transportieren. In der EcCaiT-Struktur ist eine wichtige polare nicht-bindende Interaktion zwischen der Carboxylgruppe des gamma-Butyrobetains und dem Schwefelatom eines Methionins in der zentrale Bindestelle zu erkennen. Dieses Methionin ist konserviert in den prokaryotischen CaiTs und in den Na+-unabhängigen eukaryotischen L-Carnitin Transportern (OCTN), jedoch ist es nicht konserviert im Na+-abhängigen verwandten Glycinbetain Transporter BetP. In BetP ist diese Position des Methionins durch ein Valin ersetzt. Die Mutation des Methionins in CaiT zu Valin ermöglicht zwar immernoch die H+- bzw. Na+-unabhängige Bindung des Substrates durch die Tryptophan-Box, jedoch ist der Substrattransport nahezu vollständig zerstört. Eine derart wichtige Substratkoordinierende Funktion des Schwefelatoms eines Methionins wurde bisher nicht beschrieben. Eine weitere Stelle, die in H+- bzw. Na+-abhängigen Transporter mit H+ bzw. Na+ besetzt ist, ist in CaiT von einem positiv geladenen Arginin eingenommen. Eine positive Ladung an dieser Stelle stabilisiert den Bereich im Protein in der Nähe der zentralen Substratbindestelle. Die Mutation des Arginins zu Glutamat in CaiT erzielt eine vollständige Inaktivierung des Substrattansports. Durch Zugabe von Na+ im Transportansatz kann die Substrattransportaktivität der Glutamat-Mutante jedoch teilweise zurückerlangt werden. Diese eben beschriebenen Aminosäurereste in den beiden Stellen des Proteins erklären die Kationenunabhängigkeit von CaiT. Die Aktivierung des Antiportmechanismus in CaiT wurde mit Hilfe von Bindungsstudien an rekonstituiertem Protein ermittelt. Diese Messungen ergaben für das Wildtypprotein ein sigmoidales Substratbindungsverhalten, was auf ein positiv-kooperatives Bindungsverhalten hindeutet. Die beiden Substratbindestellen im Protein sowie die beiden unterschiedlichen Substrate, L-Carnitin und gamma-Butyrobetain, lassen auf einen heterotropen positiv-kooperativen Bindungs- und einen allosterisch regulierten Transportmechanismus schließen. Bei diesem Mechanismus erhöht die Bindung eines Substrats in der regulatorischen Bindestelle durch induzierte Konformationsänderungen die Affinität eines anderen Substrats in einer weiteren Substratbindestelle. Die regulatorische Bindestelle in CaiT befindet sich an der extrazellulären Proteinoberfläche. Eine Schwächung der Substrataffinität in dieser Bindestelle durch Einführung einer Mutation, verstärkt das sigmoidale Substratbindungsverhalten und hat einen negativen Einfluss auf den Substrattransport. Durch die in dieser Arbeit gelösten 3D-Röntgenkristallstrukturen der zwei CaiT-Homologen, PmCaiT und EcCaiT, sowie den durchgeführten funktionellen Studien sowohl an Wildtypprotein wie auch an Mutanten konnte ein L-Carnitin/gamma-Butyrobetain Antiport-Mechanismus für CaiT vorzuschlagen werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sabrina Schulze
URN:urn:nbn:de:hebis:30-102557
Referee:Dieter SteinhilberORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2011/05/10
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/01/18
Release Date:2011/05/10
HeBIS-PPN:247002186
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht