Generation and analysis of mouse lines with a defect in platelet secretion and application in mouse models of atherosclerosis and tumor metastasis

  • Introduction: The involvement of platelets in various diseases has been increasingly recognized in the recent decades. This contribution is believed to involve platelet secretion and formation of reactive microparticles. Platelets contain two functionally important forms of vesicles, alpha and dense granules, which are secreted upon activation of platelets. Alpha granules incorporate larger molecules such as adhesive proteins, e.g. P-selectin, vWF and fibrinogen; chemokines like PF4 and RANTES and growth hormones like VEGF and PDGF are among the most important proteins attributed to the involvement of platelets in pathological conditions. In contrast, dense granules contain small molecules like ADP, ATP, serotonin and histamine, and they are more rapidly and completely secreted than alpha granules. Like in all secreting cells, regulated exocytosis in platelets is mediated by “zippering” of three different classes of SNARE proteins. The subtypes of these proteins found to be involved in platelet secretion are SNAP-23, syntaxin-2 and -4 and VAMP-3 and -8. Apart from SNARE proteins, other conserved proteins influencing exocytosis by e.g. acting on SNARE proteins have been described, one of the most important ones being Munc13. Platelets contribute to the progression of atherosclerosis by local deposition of inflammatory mediators like PF4, RANTES and CD40L, which leads to enhanced leukocyte recruitment and plaque formation. In 1865, Armand Trousseau first described the correlation between cancer and thrombotic events. Since the 1960s, an increasing number of studies have found an involvement of platelets also in the progression of cancer, especially in the formation of metastases. Platelets bind to circulating tumor cells and may shield them from NK cell attacks and shear stress. Platelets may also facilitate the interaction of tumor cells with other cell types and the vessel wall. Lastly, they may secrete molecules that influence the tumor cell phenotype and invasiveness. Aims of this study: We sought to generate and describe genetically modified mouse lines with defective platelet secretion and to employ these mouse lines in murine models of atherosclerosis and tumor progression to study the role of platelet secretion under pathological in vivo conditions. Results: Clostridial toxins cleave members of the SNARE protein family and can thus completely block exocytosis of neuronal and other cells. We generated three transgenic mouse lines expressing tetanus, botulinum-E or -C light chains and two transgenic mouse lines with dominant-negative mutations of SNAP-23 under the control of the platelet-specific PF4 promotor. None of these constructs was able to interfere with platelet secretion despite expression of the transgene. A functional null mutant of the only Munc13 isoform expressed in platelets, Munc13-4, showed complete lack of dense granule secretion, measured by ATP release, while alpha granule release as determined by PF4 and vWF secretion, was unaltered. Morphology, composition and adhesion of these platelets were also normal. Aggregation in response to U46619 and collagen and formation of large aggregates in flow chamber assays was attenuated. Munc13-4-deficient mice showed a severe defect in bleeding time and no formation of stable aggregates in FeCl3 thrombosis model. In response to B16 melanoma and LLC1 carcinoma cells, Munc13-4 KO platelets also showed complete abrogation of dense granule secretion, whereas alpha granule secretion and binding of platelets to tumor cells was unchanged. Interestingly, wild-type platelets, but not Munc13-4 KO platelets, enhanced transmigration of B16 and LLC1 cells through an endothelial cell layer. Exogenous ATP was able to mimic the effect of wild-type platelets and the ATP-degrading enzyme apyrase blocked platelet-mediated tumor cell transmigration. Platelets incubated with tumor cells secreted large amounts of ATP. Murine endothelial cells showed perturbed adherens junctions identified by irregular VE-cadherin staining and gap formation when incubated with supernatants from tumor cell-activated platelets as well as increased permeability under the same conditions. Addition of apyrase preserved normal endothelial morphology and function. In vivo, primary tumor growth and weight was comparable in wild-type and Munc13-4 KO mice upon B16 or LLC1 flank injection but formation of lung metastases was strongly reduced. Number, but not size of metastases was also reduced upon i.v. injection of B16 and LLC1 cells. We found P2Y2 and P2X4 receptors to be the most abundantly expressed endothelial metabotropic and ionotropic ATP receptors, respectively. Neither knock-down nor inhibition of P2X4 in endothelial cells influenced platelet-mediated transendothelial migration of B16 cells, but knock-down of P2Y2, for which no specific antagonist is available, strongly reduced plateletdependent tumor cell transmigration. When B16 melanoma cells were injected i.v. shortly after FITC-dextran (70 kDa) into wild-type mice, prominent leakage of FITC-dextran was observed three hours post-injection at extraluminal sites in the lung. In contrast, leakage into the lung parenchyma was at basal levels in Munc13-4 KO and P2Y2 KO mice after B16 cell injection. Marginal vascular leakage in Munc13-4 KO mice lacking platelet ATP secretion and in P2Y2 KO mice lacking the main endothelial ATP receptor correlated with strongly reduced extravasation of CFSE-labeled B16 melanoma cells 6 hours post-injection in these mice. Consistently, P2Y2 KO mice showed strongly reduced formation of metastases in the lung after i.v. injection of B16 or LLC1 tumor cells. Bone marrow-transplanted LDLR KO mice reconstituted with Munc13-4-deficient or wildtype bone marrow and subjected to 16 weeks of high fat diet showed no significant difference in atherosclerotic plaque formation in the aorta. Discussion: We hereby provide a thorough analysis of a mouse line with an exclusive defect in platelet dense granule secretion, thus representing a unique genetic tool to study the role of dense granule secretion in various contexts without interfering with other platelet functions. We also provide evidence how extravasation of circulating tumor cells is facilitated by tumor cell-induced ATP release from platelets. This ATP release destabilizes endothelial barriers and facilitates tumor cell extravasation and formation of metastases in the target organ. Since metastasis is the leading cause of cancer death, pharmacological interference with endothelial P2Y2 receptor function may represent a promising therapeutic strategy.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dagmar Schumacher
URN:urn:nbn:de:hebis:30:3-298576
Referee:Stefan OffermannsORCiDGND, Amparo Acker-PalmerORCiDGND
Advisor:Stefan Offermanns
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2013/05/17
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/04/18
Release Date:2013/05/17
Page Number:137
HeBIS-PPN:321528654
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht