Paleoenvironmental and paleoecological changes during deposition of the late eocene kiliran oil shale, Central Sumatra Basin, Indoniesia

  • Forty two samples of the Late Eocene Kiliran oil shale, Central Sumatra Basin, Indonesia were collected from a 102 m long drill core. Palynofacies and geochemical analyses have been carried out to reconstruct the paleoenvironmental conditions and paleoecology during deposition of the oil shale. Amorphous organic matter (AOM) is very abundant (>76%). B. braunii palynomorph is present (3-16%) as the only autochtonous structured organic matter and generally more abundant in middle part of the profile. The stable carbon isotopic composition of organic matter (δ13C) varies from -27.0 to -30.5‰ and is generally more depleted in middle part of the profile. The ratio of total organic carbon to sulfur (TOC/S), used as salinity indicator, ranges from 2.5 to 15.8 and shows variations along the profile. Relatively less saline environments are observed in the middle part profile. Fungal remains are generally present only in middle part of the profile with distinct peak of abundances. The presence of fungal remains is regarded as an indication for a relatively warmer climate during deposition of middle part of the profile. The warmer climate is thought to influence the establishment of a thermocline, limiting the supply of recycled nutrients to the epilimnion. Consequently, the primary productivity in the Kiliran lake decreased during deposition of the middle part of the profile as indicated by the relatively depleted δ13C and the blooming of B. braunii. The chemocline was also shoaling during deposition of the middle part of the profile according to the higher abundance of isorenieratene derivatives of green sulfur bacteria origin. The warmer climate affected also to increase of water supply and thus less saline environments. Tectonic subsidence is also thought to be a significant factor for the development of the Kiliran lake. The Zr/Rb ratio, an indicator for grain size, ranges from 0.4 to 1.3 and generally increases upwards along the profile. Three sudden decreases of the ratio are observed, indicating rapid change to finer grain size. These decreases are interpreted to indicate rapid deepening events of the lake due to mainly periodic subsidence. During deposition of lower part of the profile, the subsidence rates might have been relatively higher than sediment and water supply rates, resulting in a higher autochtonous fraction in the oil shale. During deposition of middle part of the profile, the sediment and water supply rates were relatively higher promoting distinct progradational sedimentation. Subsequently, the lake became more shallow and smaller during deposition of the upper part of the profile, leading to a relatively higher terrigenous input to the oil shale. Norneohop-13(18)-ene and neohop-13(18)-ene derived from methanotrophic bacteria are the dominant hopanoid hydrocarbons. The sum of their concentrations varies from 40.6 to 360.0 μg/g TOC. The δ13C of these compounds are extremely depleted (-45.2 to -50.2‰). The occurrence of abundant bacteria including methanotrophic bacteria was responsible for the recycling of carbon below the chemocline of the lake. The effect of the recycling of carbon is observed by the presence of a concomitant depletion (about 7-9‰) in 13C of some specific biomarkers derived from organisms dwelling in the whole phototrophic zone. 4-Methylsterane and 4-methyldiasterene homologues occur in the oil shale as the predominant biomarkers. The sum of the concentrations of all homologues are about 40.3-1,009.2 μg/g TOC with generally higher values in uppermost and lower parts of the profile. Ca accounts as the predominant element in the oil shale, ranging from 5.0 to 16.7%. This element shows generally parallel variation with the 4-methylsterane homologues along the profile. This suggests that the 4-methylsteranes were derived from biological sources favoring more alkaline and more trophic environments. On the other hand, these compounds were less abundant in middle part of the profile which is consistent with less alkaline and less trophic environments promoting B. braunii to bloom. The 4-methylsterane homologues are considered to originate from Dinoflagellates. Alternation between Dinoflagellates and B. braunii in Paleogene lake systems due to water chemistry changes are known from previous studies. Moreover, freshwater Dinoflagellates have been frequently reported to occur in the basin depocenters. In the present case, distinct alternation between B. braunii abundances and concentrations of 4-methylsterane homologues along the studied oil shale profile suggest that the 4-methylsterane homologues were derived from freshwater Dinoflagellates although dinosterane is not present in the sediment extracts. Water alkalinity and trophic level changes were most likely responsible for the alternation of Dinoflagellates and B. braunii blooming.

Download full text files

  • Paleoenvironmental and Paleoecological Changes during Deposition of the Late Eocene Kiliran Oil Shale, Central Sumatra Basin, Indonesia

Export metadata

Metadaten
Author:Agus Haris Widayat
URN:urn:nbn:de:hebis:30:3-298644
Referee:Wilhelm Püttmann, Wolfgang OschmannGND, Jörg ProssGND, Fathi Zereini
Advisor:Wilhelm Püttmann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2013/04/30
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/04/14
Release Date:2013/11/06
Tag:Indonesia; botryococcus braunii; lacustrine; oil shale
Page Number:114
HeBIS-PPN:335238610
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht