Characterising postural sway fluctuations in humans using linear and nonlinear methods

  • Introduction: Postural control is a prerequisite to many everyday and sporting activities which requires the interaction of multiple sensorimotor processes. As long as we have no balance disorders, the maintenance of an erect standing position is taken for granted with automatic running control processes. It is well known that with increasing age or disease balance problems occur which often cause fall-related injuries. To assess balance performance, posturography is widely applied in which body sway is traditionally viewed as a manifestation of random fluctuations. Thus, the amount of sway is solely used as an index of postural stability, that is, less sway is an indication of better control. But, traditional measures of variability fail to account for the temporal organisation of postural sway. The concept of nonlinear dynamics suggests that variability in the motor output is not random but structured. It provides the stimulus to reveal the functionality of postural sway. This thesis evaluates nonlinear analysis tools in addition to classic linear methods in terms of age-related modifications of postural control and under different standing conditions in order to broaden the existing knowledge of postural control processes. Methods: Static posturographic analyses were conducted which included the recording of centre of pressure (COP) time series by means of a force plate. Linear and nonlinear methods were used to quantify postural sway variability in order to evaluate both the amount and structure of sway. Classic time and frequency domain COP parameters were computed. In addition, wavelet transform (WT), multiscale entropy, detrended fluctuation analysis, and scaled windowed variance method were applied to COP signals in order to derive structural COP parameters. Two experiments were performed. 1) 16 young (26.1 ± 6.7 years), healthy subjects were asked to adopt a bipedal stance under single- and dual-task conditions. Three trials were conduced each with a different sampling duration: 30, 60, and 300 seconds [s]. 2) 26 young (28.15 ± 5.86 years) and 13 elderly (72 ± 7 years) subjects stood quietly for 60 s on five different surfaces which imposed different biomechanical constraints: level ground (LG), one foot on a step (ST), uphill (UH), downhill (DH), and slope (SL). Additional to COP recordings, limb load symmetry was assessed via foot pressure insoles. Results: We found a higher sensitivity of structural COP parameters to modulations of postural control and partly an improved evaluation of sway dynamics in longer COP recordings. WT revealed a reweighing of frequency bands in response to altered standing conditions. Scaling exponents and entropy values of COP signals were task-dependent. Higher entropy values were found under the dual-task and condition ST. The time scales affected under the altered standing positions differed between groups and sway directions. Mainly larger posturograms were found in the elderly. Age effects were especially revealed in position ST and concerning medial-lateral COP signals. Load asymmetry was stronger in elderly subjects for LG, UH, and DH positions. Discussion: Modifications of multiple time scales corresponds to an interplay of control subsystems to cope with the altered task demands. The affected time scales are age-dependent suggesting a change of control processes. Higher irregularity under the dual-task indicates a more complex motor output which is interpreted as less attentional investment into postural control. Larger complexity is evident for ST in contrast to LG position. ST obviously challenges lateral sway which is counteracted differently between groups. Load asymmetry suggests that especially elderly subjects adopt a step-initiation strategy. Conclusion: A continued application of nonlinear methods is necessary to broaden the understanding of postural control mechanisms and to identify classifiers for balance dysfunctions. Structural COP parameters provide a more comprehensive indication of postural control system properties between groups and task demands. COP recordings of at least 60 s are recommended to adequately quantify COP signal structure. The analysis of postural strategies in everyday activities increases the ecological validity of postural control studies and can provide valuable information regarding the development of effective rehabilitation programs.
  • Die posturale Kontrolle ist eine Voraussetzung für viele Alltagsaktivitäten und sportliche Bewegungen. Man weiß heute, dass den Kontrollmechanismen eine komplexe Interaktion sensomotorischer Prozesse unterliegt (Horak and Mcpherson, 1996; Oie et al., 2002). Solange keine Gleichgewichtsdefizite vorliegen, nehmen wir es als selbstverständlich wahr aufrecht Stehen zu können, ohne uns der Komplexität posturaler Kontrollmechanismen bewusst zu sein. Studien haben gezeigt, dass es mit zunehmendem Alter zu Defiziten in der posturalen Kontrolle kommt (Pasquier et al., 2003; Woollacott, 1993). Oftmals ist ein erhöhtes Sturzrisiko die Folge, welches unter anderem mit Verletzungen, einer eingeschränkten Mobilitätsowie einer verminderten Lebensqualität einhergehen kann (Era et al., 1997; Frank and Patla, 2003). Seit vielen Jahren schon werden posturographische Untersuchungen durchgeführt mit dem Ziel, posturale Kontrollmechanismen abzuleiten undDysfunktionen im posturalen System zu diagnostizieren (Piirtola and Era, 2006). Jedoch sind die Mechanismen, die der posturalen Kontrolle unterliegen, bis heute nicht eindeutig verstanden. Neue Erkenntnisse konnten in den letzten Jahrenvor allem durch ein erweitertes Verständnis von Bewegungsvariabilität gewonnen werden (Stergiou and Decker, 2011; Lippens and Nagel, 2009). Traditionell werden posturale Analysen unter der Annahme durchgeführt und interpretiert, dass Variabilität eine Art “Rauschen” (white noise) ist und somit Ausdruck eines Fehlers. Posturale Schwankungen werden als zufällige, nicht intendierte Abweichungen gesehen (Loosch, 1997). Der Parameter “Schwankungsausmaß” wird zur Diagnostik des statischen Gleichgewichts herangezogen und bei einer größeren Schwankung wird eine schlechtere posturale Kontrolle diagnostiziert. Im Gegensatz dazu weist der systemdynamische Modellansatz auf die funktionale Rolle der Variabilität hin (van Emmerik and van Wegen, 2002). Variabilität ist Ausdruck der Anpassung und Flexibilität und somit notwendig, um auf ständige Umweltveränderungen reagieren zu können. Ein erhöhtes Schwankungsausmaß ist demnach nicht ausschließlich ein Zeichen für Instabilität (Newell et al., 1993). Eine größere Variabilität posturaler Schwankungen kann auch positiv im Sinne von mehr Umweltexploration interpretiert werden (Lacour et al., 2008). So konnte gezeigt werden, dass posturale Schwankungen nicht zufällig sind, sondern eine Struktur enthalten (Duarte and Zatsiorsky, 2000), dessen Charakterisierung zusätzliche Informationen über die Organisation des posturalen Kontrollsystems liefert (Stergiou and Decker, 2011). Die vorliegende Arbeit evaluiert nichtlineare Methoden unter dem systemdynamischen Ansatz zusätzlich zu den traditionell eingesetzten linearen Methoden. Ziel ist es, neben der Quantifizierung des Ausmaßes posturaler Schwankungen ihre Struktur zu charakterisieren, um das Verständnis für posturale Kontrollmechanismen zu erweitern. Die Evaluierung erfolgt zunächst über den Vergleich von Stehen mit und ohne kognitiver Zusatzaufgabe, wo Studien erste Hinweise auf eine veränderte COP1 Signalstruktur geben (Cavanaugh et al., 2007; Donker et al., 2007; Stins et al., 2009). Durch das Betrachten unterschiedlicher Signallängen und eines umfangreichen Methodenspektrums sollen Anhaltspunkte für die Applikation vonnichtlinearen in Kombination mit linearen Analyseverfahren abgeleitet werden. In einer zweiten Untersuchung werden diese dann in einem angewandten Studiendesign umgesetzt. Dabei wird die Veränderung posturaler Kontrollstrategien bei unterschiedlichen Standpositionen untersucht, welche alltägliche Situationen simulieren, unter Berücksichtigung altersbedingter Effekte. Dies ist ein erster Ansatz zur Erreichung einer hohen ökologischen Validität posturaler Studien (Frank and Patla, 2003; Visser et al., 2008). Erst kürzlich wurde gezeigt, dass bei älteren Menschen meist interne Auslöser (z.B. Gewichtsverlagerungen) ursächlich für Stürze sind (Robinovitch et al., 2013). Zudem haben ältere Personen größere Schwierigkeiten auf Umgebungsveränderungen zu reagieren (Nardone and Schieppati, 2010). Es ist jedoch bisher unbekannt, wie sich Defizite in der Gleichgewichtskontrolle älterer Menschen auf die Struktur posturaler Schwankungen auswirken. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marietta KirchnerORCiDGND
URN:urn:nbn:de:hebis:30:3-324502
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Christian T. Haas, Christopher HeimORCiDGND, Dirk MetzlerORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2013/11/29
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/11/27
Release Date:2013/11/29
Page Number:190
HeBIS-PPN:334443393
Institutes:Psychologie und Sportwissenschaften / Sportwissenschaften
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
7 Künste und Unterhaltung / 79 Sport, Spiele, Unterhaltung / 790 Freizeitgestaltung, darstellende Künste, Sport
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht