Bose-Einstein-Korrelationen in Pb-Au Stößen bei einer Strahlenergie von 80 GeV pro Nukleon
- Die HBT-Interferometrie bietet über die Analyse von Bose-Einstein-Korrelationen geladener Pionen die Möglichkeit, Raumzeit-Dimensionen von Kern-Kern-Reaktionen zu vermessen. Dadurch kann das Ausfrierverhalten der in diesen Reaktionen enstehenden teilchenemittierenden Quelle untersucht werden. Die so gewonnenen Informationen tragen zu einem Verständnis der in den Kollisionen ablaufenden Prozesse und somit zu Erkenntnissen über Kernmaterie unter extremen Bedingungen bei. Von besonderem Interesse ist dabei die Beobachtung der Ausbildung eines QGP-Zustandes. Hierfür sind systematische Studien von verschiedenen Kollisionssystemen und -energien von großer Bedeutung.
Im Rahmen dieser Arbeit wurde eine Analyse von Bose-Einstein-Korrelationen in Pb-Au-Kollisionen bei einer Strahlenergie von 80A GeV durchgeführt. Die hier analysierten Daten wurden mit dem CERES-Detektor am SPS-Beschleuniger des CERN aufgenommen. Diese Analyse stellt eine erneute Untersuchung des Datensatzes unter Verwendung einer verbesserten Kalibrierungsprozedur für den CERES-Detektor dar. Infolgedessen konnte eine Verringerung der systematischen Unsicherheiten erreicht werden. Die neuen Ergebnisse stimmen mit den von der CERES-Kollaboration bereits publizierten HBT-Ergebnissen zufriedenstellend überein. Der Vergleich mit den Ergebnissen des NA49-Experiments, dass Pb-Pb-Kollisionen bei gleicher Strahlenergie unter dem Aspekt der HBT-Interferometrie untersucht hat, zeigt ebenfalls eine Übereinstimmung.
Durch diese Konsistenz und die Minimierung der systematischen Unsicherheiten im Bereich der SPS-Energien wird nun die Interpretation des Ausfrierverhaltens der Quelle besser ermöglicht: In dieser Arbeit wurde eine universelle Ausfrierbedingung von Pionen bei unterschiedlichen Schwerpunktsenergien und für verschiedene Kollisionssysteme untersucht. Diesbezügliche Observablen sind das mittels HBT-Radien bestimmte Ausfriervolumen und die mittlere freie Weglänge von Pionen zum Zeitpunkt des Ausfrierens der Quelle.
Bei dieser Untersuchung in Abhängigkeit von der Schwerpunktsenergie der Kollision zeichnet sich ein Minimum des Ausfriervolumens bei hohen AGS- und niedrigen SPS-Energien ab. Zusätzlich ergibt sich für die mittlere freie Weglänge ein ebenfalls nicht monotones Verhalten in diesem Energiebereich. Aus der dort vergrößerten Weglänge lässt sich auf eine erhöhte Emissiondauer der teilchenemittierenden Quelle gegenüber anderen Energien schließen. Die Emissionsdauer spielt in Verbindung mit dem Nachweis eines QGP-Zustandes eine wichtige Rolle. Ob die beschriebenen Beobachtungen durch ein Ausbilden dieses Zustandes oder auf Grund von anderen unbekannten Mechanismen hervorgerufen werden, kann abschließend noch nicht beurteilt werden. Denn verbleibende systematischen Unsicherheiten bei niedrigen Schwerpunktsenergien lassen derzeit keine weiteren Interpretationen zu. Insbesondere betrifft dies die noch bestehende Diskrepanz der Ergebnisse zwischen CERES und NA49 für eine Strahlenergie von 40A GeV. Daher ist eine Reanalyse der Daten von CERES bei dieser Strahlenergie von Bedeutung. Ebenso würde eine erneute systematische Messung im AGS-Energiebereich weitere grundlegende Interpretationen ermöglichen.
In Zukunft werden am RHIC-Beschleuniger des BNL in den USA und im Rahmen des FAIR-Projektes an der GSI bei Darmstadt Experimente in dieser Energieregion durchgeführt werden. Möglicherweise kann dann anhand dieser Messung ein universelles Ausfrierkriterium für Pionen sowie der Grund für ein verändertes Systemverhalten bei bestimmten Energien festgestellt werden.