Quantenchemische Untersuchungen der Photochemie mittelgroßer Moleküle unter Berücksichtigung des Elektronentransferselbstwechselwirkungsfehlers von zeitabhängiger Dichtefunktionaltheorie

  • Das Ziel meiner Arbeit ist die zuverlässige quantenchemische Beschreibung der Absorptionsspektren von mittelgroßen Molekülen und das Studium von photoaktiven Pigmenten. Nach einer kurzen Einführung in das Thema "elektronisch angeregte Zustände und Photoreaktionen" beschreibe ich die Formalismen, die den verwendeten Rechenmethoden zu Grunde liegen und diskutiere die Anwendbarkeit auf größere Moleküle. Hierbei liegt ein Hauptaugenmerk auf den dichtefunktionaltheoriebasierten Methoden (DFT-Methoden), vor allem auf den Eigenschaften der zeitabhängigen Dichtefunktionaltheorie (engl.: time dependent density functional theory, TDDFT). Anschließend erfolgt eine Zusammenfassung der im Laufe dieser Arbeit erhaltenen Ergebnisse. Die moderne Quantenchemie befasst sich mit der Anwendung der in den 20er und 30er Jahren des 20. Jahrhunderts entwickelten Quantenmechanik auf chemische Probleme. Zum theoretischen Studium von Molekülen gibt es verschiedene Ansätze. Zum einen gibt es die hochgenauen ab initio Methoden, die Näherungsverfahren zur elektronischen Schrödingergleichung sind. Sie haben den Vorteil systematisch verbesserbar und auf einem sehr soliden theoretischen Gerüst aufgebaut zu sein. Die Genauigkeit der Rechnungen kann die von experimentellen Ergebnissen erreichen, allerdings beschränkt der hohe Rechenaufwand die Anwendung solcher ab initio Methoden auf kleine Moleküle wie Wasser, Methan oder Benzol. Am anderen Ende des Spektrums der quantenchemischen Methoden sind die "semiempirischen Methoden" angesiedelt. Sie erfordern nur einen sehr geringen Rechenaufwand, wodurch es möglich ist, sehr große Systeme mit mehr als 1000 Atomen zu beschreiben. Allerdings führt der Ansatz, verschiedene Terme der Schrödingergleichung durch an experimentelle Daten gefittete Parameter zu ersetzen, zu einer geringen Genauigkeit und unvorhersehbaren Fehlern. Dies schränkt die standardmäßige Anwendung dieser Methoden stark ein, und eine Verifizierung durch genauere Methoden ist oftmals erforderlich. Zwischen diesen beiden Polen (hoch genau aber sehr hoher Rechenaufwand und geringer Rechenaufwand, dafür aber ungenau) stehen die auf der Dichtefunktionaltheorie (DFT) basierenden Methoden. Sie zeichnen sich durch eine gute Genauigkeit bei vergleichsweise geringem Rechenaufwand aus. Dadurch hat sich die DFT in den letzten Jahren zur beliebtesten Methode für das Studium mittelgroßer Moleküle mit bis zu 400 Atomen entwickelt. DFT ist eine formal exakte Methode, bei der die berechneten Größen aus der Elektronendichte des Systems abgeleitet werden. Elektronenaustausch- und Korrelationseffekte werden durch Funktionale, den sogenannten Austauschkorrelationsfunktionalen (engl.: exchange correlation functionals, xc-functionals) beschrieben. Die zeitabhängige Dichtefunktionaltheorie (time dependent DFT, TDDFT) ermöglicht die Beschreibung elektronisch angeregter Zustände mit einer guten Genauigkeit, aber zu einem Bruchteil des Rechenaufwands von ab initio Methoden, was TDDFT zur Methode der Wahl für das Studium der Photochemie mittelgroßer Moleküle macht. Die Fehler in den Anregungsenergien sind in der Regel systematischer Natur und den verwendeten xc-funktionalen geschuldet. Dennoch kann TDDFT nicht als "black box" Methode verwendet werden, da nicht alle elektronischen Zustände gleich gut beschrieben werden. Während energetisch niedrig liegende, lokale π -> π* und n -> π* Zustände oftmals in sehr guter Übereinstimmung mit dem Experiment sind, können Rydberg und Ladungstransferzustände (engl.: charge transfer states, ct-states) Fehler von mehreren Elektronenvolt in der Anregungsenergie haben. Doppelt oder höher angeregte Zustände können mit standard TDDFT Methoden nicht beschrieben werden. Dies kann zu Problemen bei ausgedehnten π-Systemen führen, da z.B. die angeregten Zustände von Polyenen einen hohen Doppelanregungscharakter besitzen. Trotz alledem ist TDDFT eine sinnvolle Methode zum Studium elektronisch angeregter Zustände, da ihre Probleme bekannt sind und vor allem ihr Ursprung in der Theorie gut verstanden ist. Die meisten Probleme können durch die intelligente Wahl der verwendeten xc-Funktionale vermieden werden. Kombiniert man TDDFT mit der Konfigurationswechselwirkungsmethode mit Einfachanregungen (engl.: configuration ineraction singles, CIS) erhält man sehr zuverlässig und mit vergleichbar geringem Rechenaufwand die richtige Energiereihenfolge der angeregten Zustände. Mit dieser Methode war es in dieser Arbeit möglich, die komplexe Photochemie von Bisazomethinpigmenten zu untersuchen und die experimentellen statischen und zeitaufgelösten Spektren auf molekularer Ebene zu interpretieren. Es konnte sowohl der Mechanismus aufgeklärt werden, der für die Fluoreszenzlöschung in den nicht-fluoreszierenden Derivaten verantwortlich ist, als auch die unerwartet komplizierte Photochemie der fluoreszierenden Moleküle schlüssig erklärt werden. Auch die Photoisomerisierung von Z-Hemithioindigo-Hemistilbene (HTI) zu seine E-Form wurde mit dieser Methode untersucht.

Download full text files

  • Dissertation_Ploetner.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jürgen PlötnerGND
URN:urn:nbn:de:hebis:30:3-333288
Referee:Andreas DreuwORCiDGND, Irene BurghardtORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2014/03/18
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/08/11
Release Date:2014/03/18
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:364925175
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG