Evolutionary genetics of bears and red foxes over phylogenetic and phylogeographic time scales

  • Climatic fluctuations during the Pleistocene (2.6-0.01 million years) have played an important role during evolution of many species. Cyclic range contractions and expansions had demographic consequences within species, provided environmental conditions for population divergence and speciation and enabled secondary contact and interspecific hybridization. These and other evolutionary processes have left genetic signatures in the genomes of affected organisms. Comprehensive and unbiased estimates of evolutionary processes can be obtained using genetic markers from different parts of the genome and by integrating population genetic and phylogenetic concepts. Suitable for studies on evolutionary processes and patterns over different evolutionary time scales are bears (Ursidae) and foxes (Vulpes), which occupy a wide range of habitats and evolved during the past few millions of years. In my thesis, I therefore used bears and red foxes as study species to investigate the genetic variation within and between species and to obtain estimates of evolutionary relationships and divergence times of populations and species that I interpreted in a climatic context. Further, I investigated population genetic processes during the evolution of bears. My thesis includes three publications and one submitted manuscript, spanning different evolutionary time scales - from evolutionary relationships and processes among species (phylogenetic time scales, Publications I & II), among populations and closely related species in a geographical context (phylogeographic time scales, Publications II & III), to ongoing processes within species (population genetic time scales, Publication IV). In Publication I (Kutschera et al. 2014, Mol Biol Evol 31(8):2004-2017), I studied bears at several nuclear markers from several individuals per species, complemented with markers from the Y chromosome. Using approaches based on a population genetic concept (coalescent theory) I obtained a species tree with divergence time estimates. Further, I studied two evolutionary processes in bears, interspecific gene flow and incomplete lineage sorting (ILS). This study contributed to the growing evidence that population genetic processes can be relevant on time scales up to several millions of years. In Publication II (Hailer, Kutschera et al. 2012, Science 336(6079):344-347), we complemented previous mitochondrial (mt) DNA-based inference of the evolutionary history of polar and brown bears with nuclear DNA. Coalescence-based species tree analyses of multiple nuclear markers from several individuals per species placed polar bears as sister lineage to brown bears and their divergence time to about 600 thousand years ago (ka). This contrasted previous mtDNA-based inference. We explained this discrepancy between mtDNA and nuclear DNA with interspecific gene flow between polar and brown bears. In Publication III (Kutschera et al. 2013, BMC Evol Biol 13:114), I studied range-wide phylogeographic events and their timing in red foxes. A synthesis of newly generated and published mtDNA sequences was analyzed using a coalescence-based approach with multiple fossil calibration points. Thereby, I validated the identity and geographic distribution of several red fox lineages and showed that red foxes colonized North America and Japan several times independently during the late Pleistocene (126-11 ka) and around the last glacial maximum (26.5-19 ka). In a comparison of my results from red foxes to brown bears and grey wolves, I identified similar phylogeographic patterns. In Publication IV (Kutschera et al., submitted to Biol Conserv), I found similar levels of genetic variability in vagrant polar bears that had reached Iceland compared to established subpopulations from across the range. Based on climate projections reported by the Intergovernmental Panel on Climate Change in 2014, polar bear habitat will markedly decline and become increasingly fragmented within the next decades. Dispersal will play an important role by connecting isolated subpopulations, thereby maintaining genetic diversity levels. My results indicate that vagrants could stabilize genetic variability when immigrating into established subpopulations. In conclusion, my thesis provided a deeper understanding of evolutionary genetic processes and patterns and their timing in bears and red foxes in a climatic context, which can have conservation implications. Further, I showed that processes like ILS and interspecific gene flow can be relevant over different time scales and are important aspects of evolutionary history. Thereby, my thesis contributed to the knowledge on the evolutionary history of several carnivore species and on evolutionary processes acting within and between closely related species.

Download full text files

  • Dissertation_VKutschera.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Verena Esther Kutschera
URN:urn:nbn:de:hebis:30:3-335699
Referee:Axel JankeORCiD, Markus PfenningerORCiDGND
Document Type:Doctoral Thesis
Language:English
Year of Completion:2014
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/12/17
Release Date:2015/07/28
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:364966203
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG