Semiklassische Beschreibung gebundener Zustände und der Vakuumfluktuationen in sphärisch symmetrischen Metriken

  • Die Dissertation ist in den Bereichen der semiklassischen Quantengravitation und der pseudokomplexen Allgemeinen Relativitätstheorie (pk-ART) anzusiedeln. Dabei wird unter semiklassischer Quantengravitation die Untersuchung quantenmechanischer Phänomene in einem durch eine klassische Gravitationstheorie gegebenen gravitativen Hintergrundfeld verstanden und bei der pk-ART handelt es sich um eine Alternative zu der aktuell anerkannten klassischen Gravitationstheorie, der Allgemeinen Relativitätstheorie (ART), die die reellen Raumzeitkoordinaten der ART pseudokomplex erweitert. Dies führt zusammen mit einer Veränderung des Variationsprinzips in führender Ordnung auf eine Korrektur der Einstein- Gleichung der ART mit einem zusätzlichen Quellterm (Energie-Impuls-Tensor), dessen exakte Form jedoch bisher nicht bekannt ist. Die Beschreibung der Gravitation als Hintergrundfeld ergibt sich zwangsläufig daraus, dass auf Basis der ART bisher keine quantisierte Beschreibung für sie gefunden werden konnte. Jedoch wird erhofft, dass die Untersuchung semiklassischer Phänomene Hinweise auf die korrekte Theorie der Quantengravitation gibt. Zudem motiviert der Mangel einer quantisierten Gravitationstheorie die Verwendung alternativer Theorien, da sich dadurch die Frage stellt, ob die ART die korrekte Beschreibung klassischer Felder ist. Das Ziel der vorliegenden Dissertation war die grundlegenden Unterschiede zwischen der ART und der pk-ART für gebundene sphärisch symmetrische Zustände der Klein-Gordon- und der Dirac-Gleichung zu identifizieren und ein qualitatives Modell der Vakuumfluktuationen in sphärisch symmetrischen Materieverteilungen zu bestimmen, wobei der Zusammenhang der pk-ART mit den Vakuumfluktuationen in der Annahme besteht, dass ein Zusammenhang zwischen ihnen und dem zusätzlichen Quellterm der pk-ART existiert. Dafür wurden die gebundenen Zustände der Klein-Gordon- und der Dirac-Gleichung für drei verschiedene Metrikmodelle (zwei ART-Modelle und ein pk-ART-Modell) mit konstanter Dichte systematisch numerisch berechnet, einige repräsentative Grafiken erstellt, anhand derer die grundlegenden Unterschiede der Ergebnisse der ART-Modelle und des pk-ART-Modells erörtert wurden, und die ART Ergebnisse der Dirac-Gleichung soweit wie möglich mit Ergebnissen der Literatur verglichen. Insbesondere wurde dabei festgestellt, dass die Energieeigenwerte in der pk-ART im Gegensatz zu denen in der ART in Abhängigkeit der Ausdehnung des Zentralobjekts ein Minimum aufweisen. Zudem wurden die Energieeigenwerte der Klein-Gordon-Gleichung teilweise sowohl über das Eigenwertproblem einer Matrix als auch über ein Anfangswertproblem berechnet und es wurde festgestellt, dass die Beschreibung als Eigenwertproblem deutlich uneffektiver ist, wenn dafür die Basis des dreidimensionalen harmonischen Oszillators genutzt wird. Für die Entwicklung des qualitativen Vakuumfluktuationsmodells wurden zwei Näherungen für den Erwartungswert des Energie-Impuls-Tensors in führender Ordnung für die Schwarzschildmetrik (ART) verglichen und die Verwendung eines qualitativen Modells durch die dabei auftretende Diskrepanz gerechtfertigt. Danach wurden die Vakuumfluktuationen für Metriken konstanter Materiedichte mit Hilfe einer der Näherungen in führender Ordnung berechnet und ein Modell gesucht, das den gleichen qualitativen Verlauf aufweist. Im Anschluss wurde dieses Modell noch für einfache Metriken mit variabler Materiedichte verifiziert. Die Dissertation leistet mit der Analyse der gebundenen Zustände einen Beitrag in der Identifikation der Unterschiede zwischen der pk-ART und der ART und führt somit auf weitere mögliche Messgrößen, die der Unterscheidung der beiden Theorien dienen könnten. Weiterhin ermöglicht das abgeleitete Modell eine Verfeinerung der schon publizierten Ergebnisse über Neutronensterne und die für die Erstellung nötigen Vorarbeiten leisten einen Beitrag zur Identifikation des pk-ART Quellterms.

Download full text files

Export metadata

Metadaten
Author:Gunther Caspar
URN:urn:nbn:de:hebis:30:3-376813
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Walter GreinerGND, Peter O. Hess, Marcus BleicherORCiDGND
Advisor:Walter Greiner, Peter O. Hess
Document Type:Doctoral Thesis
Language:German
Year of Completion:2015
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/05/28
Release Date:2015/06/11
Page Number:194
HeBIS-PPN:360025595
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht