Analyses on the diversity of drought tolerance in grasses of the genus Panicum

  • Drought stress is one of the major abiotic factors diminishing crop productivity world wide. In the course of climate change, regions which already experience dry seasons nowadays will suffer from elongated drought periods and water shortage. These climatic changes will not only have an impact on the regional flora and fauna but also on the people inhabiting these areas. It is therefore of great importance to understand the reactions of plants to drought stress to help breeding and biotechnological approaches for the benefit of new robust cereal cultures growing under low water regimes. In this dissertation four grasses of the genus Panicum, P. bisulcatum (C3), P. laetum, P. miliaceum and P. turgidum (all C4 NAD-ME) were subjected to drought stress. The plants diverse reactions were investigated on a physiological as well as on a molecular level to deepen the understanding of drought stress responses. Drought stress was imposed for a species-specific period until a relative leaf water content (RWC) of ~50 % was reached in each grass. Physiological measurements were conducted on leaves with a RWC of ~50 % investigating chlorophyll a fluorescence parameters with a Plant Efficiency Analyzer (PEA) and gas exchange parameters like the photosynthesis rate and stomatal conductance with a Gas Fluorescence Chamber (GFS-3000). Subsequent molecular analysis were conducted on leaf samples taken (RWC = 50 %) analysing different proteins and the transcriptome of the Panicum species. The physiological measurements revealed a higher photosynthesis rate for the C4 grasses under drought stress with no significant differences between the C4 species. Also the water use efficiency was significantly higher in the C4 species in comparison to the C3 species independent from the water regime supporting results from the literature. The chlorophyll a measurements revealed the strongest adaptation to water shortage in the C4 species P. turgidum followed by the C3 species P. bisulcatum. It has been shown before (GHANNOUM 2009) that the C4 photosynthesis apparatus is more prone to drought stress than the C3 apparatus – despite the higher water use efficiency. Results also suggested that the great adaptation of P. turgidum to drought stress arose from its ability to recover from drought stress (all JIP test parameters showed no significant differences between control and recovery samples). The additional down-regulation of PS II but not of PS I under drought stress also helped the plant to endure times of water shortage and facilitated the recovery when water was available again. Protein analyses on the content of PEPC, OEC and RubisCO (LSU and SSU) revealed no changes. Dehydrin 1 in contrast was strongly up-regulated under drought stress and Summary 108 recovery in all four Panicum species. The stable content of the OEC protein was therefore not the catalyst of rising K peaks measured by chlorophyll a fluorescence and a reduced OEC activity was supposed. Transcriptomic analyses revealed a myriad of differentially regulated tags. Due to unsequenced genomes, tags could only be partially (8 % maximum for P. turgidum) annotated to their specific genes. Diverse methods were therefore used to annotate the most highly regulated tags to their genes and their products. Special emphasis was put on the regulation of five gene products confirming the regulation schemata from the HT-SuperSAGE analyses. Interestingly one protein – the NCED1 – was down-regulated under stress conditions, in contrast to results from the literature. It is therefore of great importance to investigate longer lasting drought to understand the full range of drought stress adaptation. Future genome sequencing projects might also include the Panicum species investigated in this dissertation and important gene candidates with no hits (maybe completely new to the research community) might help breeding and biotechnology approaches to produce more drought resistant crop species.

Download full text files

Export metadata

Metadaten
Author:Tanja JungcurtGND
URN:urn:nbn:de:hebis:30:3-378212
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Wolfgang BrüggemannORCiD, Thomas BerberichORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/07/07
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/06/03
Release Date:2015/07/10
Page Number:158
HeBIS-PPN:36186874X
Institutes:Biowissenschaften / Institut für Ökologie, Evolution und Diversität
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht