Microfabrics and deformation mechanisms of Gorleben rock salt

  • This thesis presents microstructural investigations of rock salt from the central part of the Gorleben salt dome (Northern Germany). The main emphasis was to characterize the rock salt microfabrics, to identify operating deformation mechanisms in halite and anhydrite and to decipher the macro- and microstructural distribution of hydrocarbons, which have been encountered during the underground exploration of the salt dome. The microfabrics of the Knäuel- and the Streifensalz formation indicate that strain-induced grain boundary migration has been active during deformation of halite. Crystal plastic deformation of halite is further documented by lattice bending, subgrain formation and minor subgrain rotation. Evidence for pressure solution of halite has not been found, but cannot be excluded because of the small grain size, the lack of LPO and the low differential stress (1.1 - 1.3 MPa) as deduced from subgrain-size piezometry. Solution precipitation creep was proven for intercalated anhydrite layers and clusters, which have been deformed in the brittle-ductile regime. Brittle deformation of anhydrite in terms of boudinage and fracturing was counteracted by viscous creep of halite which caused a re-sealing of fractures and a reestablishing of the characteristic sealing capacity of rock salt. Hydrocarbons are mainly located along cross cut 1 West of the Gorleben exploration mine and are heterogeneously distributed in the rock salt. They are incorporated in the rock salt foliation in the form of streaks, dispersed clouds, clusters and isolated patches. On the micro-scale, hydrocarbons are trapped along grain boundaries of halite and/or anhydrite, in micro-capillary tubes of anhydrite and in pore space of the rare rock salt with elevated porosity (< 1.26 vol.-%). Such elevated porosities correlate with elevated hydrocarbon concentrations of several hundred ppm. The overall concentrations of hydrocarbons, however, are very low (< 0.05 wt.-%). Elevated porosity is depicted to be a remnant originating from an early stage of salt uplift when fluid and hydrocarbons have migrated and spread from the Staßfurt Karbonat (z2SK) into the superjacent Gorleben Hauptsalz. During halokinesis and the strong reworking of the salt body hydrocarbons have been redistributed and dismembered resulting in the isolated present-day occurrences. The distribution of hydrocarbons shows no relation to local variations in the rock salt fabric. The microstructures of hydrocarbon-bearing and hydrocarbon-free Gorleben rock salt are not distinguishable from each other. Likewise, the presence of hydrocarbons should not have influenced the mechanical behavior or the rock salt as indicated by the microfabrics studied and by geomechanical data. The pure amounts of hydrocarbons are too low for any detectable impact on the barrier properties of this part of rock salt. Although hydrocarbons have migrated into the Gorleben Hauptsalz during an early stage of salt uplift when the sealing capacity of rock salt was diminished, the major implication of their isolated distribution patterns is that the Gorleben rock salt was able to regain its sealing capacity during subsequent deformation and re-equilibration. Former migration pathways for fluid and hydrocarbons have been healed and do not exist anymore. The application of X-ray computed tomography (CT) allows the 3D visualization and quantification of anhydrite, pore space and fluid phases located along grain-boundaries or trapped as intracrystalline inclusions. The 3D reconstruction of anhydrite clusters and pore space for the same sample reveals different spatial distribution patterns. This fact implies that anhydrite is not responsible for such elevated pore space in the rock salt studied, which has been largely closed during the polyphase deformation history of the Gorleben salt dome. High-resolution nanoCT scans (≤ 1 μm voxel size) of single intra- and intercrystalline fluid inclusions in rock salt enable a characterization of gaseous, solid and liquid phases inside single fluid inclusions and give exact information on morphology and shape. The 3D reconstruction of grain boundary fluid inclusions allows the amount, volumes, surface areas or diameters of various types to be determined. Non-destructive X-ray CT imaging is presented as very useful tool to characterize the structural inventory of rock salt. This non-destructive technique offers new perspectives for microstructural studies and for a wide range of research in structural geology, in general.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Nicolas Thiemeyer
Place of publication:Frankfurt am Main
Referee:Gernold ZulaufORCiDGND, Jörg Hammer
Document Type:Doctoral Thesis
Date of Publication (online):2016/08/24
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/05/20
Release Date:2016/08/24
Tag:Gorleben; computed tomography; deformation mechanisms; hydrocarbons; microfabrics
rock salt
Page Number:215
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoDeutsches Urheberrecht