PARP inhibitors in combination with chemotherapeutics target the underlying genetic phenotype of Ewing’s sarcoma and osteosarcoma to induce cell death or synthetic lethality

  • Recently, two of the most common types of bone cancers in children and young adults have been proven to exhibit vulnerability to poly(ADP)-ribose polymerase, (PARP) inhibitors (e.g. olaparib, talazoparib). Ewing’s sarcoma (ES) are reported to harbor a fusion gene EWS-FLI1 (85%), inducing tumorigenesis. Additional, as the fusion gene acts as aberrant transcription factor, it similarly induces elevated PARP expression levels sensitizing ES to PARP inhibition. Second, by an exome sequencing approach in a set of primary osteosarcomas (OS) we identified mutation signatures being reminiscent of BRCA deficiency. Therefore, the sensitivity of a panel of OS cell lines to either talazoparib single treatment or in combination with several chemotherapeutic drugs was investigated. To screen ES tumor cell lines against PARP inhibitors we applied four different PARP inhibitors (talazoparib, olaparib, niraparib and veliparib) that are frequently being used for clinical studies. We combined those PARP inhibitors with a set of chemotherapeutics (temozolomide (TMZ), SN-38, etoposide, ifosfamide, doxorubicin, vincristine and actinomycin D) that are part of the first-line therapy of ES patients. Here, we demonstrate how PARP inhibitors synergize with TMZ or SN-38 to induce apoptosis, whereas the combination of PARP inhibitors with the other drugs are not favorable. By investigation of key checkpoints in the molecular mechanisms of cell death, the pivotal role of the mitochondrial pathway of apoptosis mediating the synergy between olaparib and TMZ was revealed. Employing talazoparib monotherapy in combination with or without several chemotherapeutic drugs (TMZ, SN-38, cisplatin, doxorubicin, methotrexate and etoposide/carboplatin), the correlation between homologous recombination (HR) repair deficiency (BRCAness) and the response to talazoparib as prototypical PARP inhibitor was validated in different OS cell lines. By calculation of combination indices (CI) and fraction affected (Fa) values, we identified TMZ as the most potent chemotherapeutic drug in combination with talazoparib inducing the mitochondrial apoptotic pathway in OS. In our studies of two independent tumor entities with contrary genetic background we identified the combination of PARP inhibitor and TMZ as being most effective. Our studies point out that after TMZ induced DNA methylation and concomitant PARP trapping, DNA damage-imposed checkpoint kinase activation consequently induces G2-cell cycle arrest. Subsequent, PARP inhibitor/TMZ causes MCL-1 degradation, followed by activation of BAK and BAX, succeeding in loss of mitochondrial outer membrane potential (LMMP) and activation of downstream effector-caspases in mitochondrial apoptosis. Our findings emphasize the importance of PARP inhibition in order to chemosensitize ES, which express high PARP levels, or OS that bear features of BRCAness.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Florian Engert
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Simone FuldaORCiDGND
Document Type:Doctoral Thesis
Year of Completion:2016
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/08/03
Release Date:2016/08/11
Page Number:103
Zusammenfassung auf deutsch
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht