The motor protein ABCE1 drives the essential process of ribosome recycling

  • Protein synthesis is a central process within every living cell, where information embodied in the nucleotide sequence of the mRNA is translated into the primary sequence of proteins. The translation procedure comprises four steps: initiation, elongation, termination, and recycling. Ribosome recycling orchestrated by the ATP‐binding cassette (ABC) protein ABCE1, renders mRNA translation into a cyclic process, connecting termination with re initiation. In Archaea and Eukarya, the ABC protein ABCE1 catalyzes ribosome recycling by splitting the ribosome (80S/70S) into the small 40S/30S and large 60S/50S subunits, providing them for the next translation round. The ABC‐type ATPase one of the most conserved proteins, present in all Archaea and Eukarya, but not in Bacteria, is essential for life in all organisms examined so far. ABCE1 was initially identified as RNase L inhibitor (Rli1), involved in the antiviral RNA immunity, and as host protein 68 (HP68) playing a role in HIV capsid assembly. However, the strong sequence conservation of ABCE1 points towards a more fundamental function within cell homeostasis, which was found by its involvement in various translation processes. ABCE1 turned out to be the major ribosome recycling factor indispensable for life in Eukarya and Archaea, being involved in canonical translation, mRNA surveillance, ribosome biogenesis, and translation initiation. Recent functional and structural data provided first insights into the mechanism of ABCE1 in ribosome recycling. The nucleotide‐binding domains (NBDs) sandwich two ATP molecules in the NBD1‐NBD2 interface causing an NBD engagement, which is released upon ATP hydrolysis. In case of ABCE1, this ATP‐dependent tweezer‐like motion of the NBDs transfers mechanical energy to the ribosome and tears the subunits apart. The FeS‐cluster domain may swing out of the NBD cleft into the inter‐subunit space of the ribosome, which drives the subunits apart either directly or via the bound a/eRF1. Hence, the subunits are released and the post‐splitting complex (PSC, 40S/30S∙ABCE1∙ATP) is available for re‐initiation events, presumably occurring via the known interactions of ABCE1with initiation factors. One of the most crucial aspects of this model is the nucleotide‐dependent conformational switch of ABCE1, which drives ribosomal subunit splitting. However, the conformational states, which ABCE1 undergoes during ribosome recycling, including their mechanistic importance for its diverse functions, remain unknown. Further, the exact role and movement of the essential FeScluster domain during ribosome recycling are not yet understood. Additional, it remains elusive where ABCE1 is bound in the post‐splitting complex and how the splitting mechanism is regulated concerning the asymmetric NBDs and the coupling of nucleotide binding with NBD closing and ATP hydrolysis. Thus, in order to monitor the conformational dynamics of the ribosome recycling factor ABCE1 two complementing methods in structural biology, namely single‐molecule based Förster resonance energy transfer (smFRET) and pulsed electron‐electron double resonance (PELDOR) spectroscopy were applied. Single‐molecule FRET as an integrated biophysical approach based on Förster resonance energy transfer and single‐molecule detection was used to understand the fundamental molecular principles of ABCE1. Contrary to the anticipated two‐state model of ABC proteins, it was shown in this thesis that both nucleotide‐binding sites of ABCE1 are always in a dynamic equilibrium between conformational states with distinct properties: open, intermediate, and closed. The equilibrium in the two nucleotide‐binding sites is distinctly affected when ABCE1 interacts with ribosomal subunits and nucleotides. While ABCE1 can adopt all three conformational states in its free or 30S bound situation, the closed state has the highest affinity for 30S subunit. Further, dissociation of ABCE1 from the small ribosomal subunit, a step that completes the recycling process, is followed by the opening of the NBSs. Hence, the current findings have important implications not only for ribosome recycling but represent a new paradigm for the molecular mechanisms of twin‐ATPases. The complementing PELDOR measurements provide the advantage of high distance precision and reliability studying macromolecular complexes. Distance distributions of a number of ABCE1 variants even bound to the 1‐MDa post‐splitting complex (30S∙ABCE1∙AMP‐PNP), composed of the 16S rRNA, 28 ribosomal proteins, and ABCE1, was analyzed. Thus, the available crystal structures of ABCE1 in the open state were validated, since all distances of ABCE1 measured in this study perfectly correspond to this crystallized state. Unfortunately, ABCE1 could not be trapped in the closed state under the experimental conditions applied, although plenty different approaches to stabilize this state were performed. In the second part of this study the architecture yet unknown of the 1‐MDa post splitting complex (40S/30S∙ABCE1∙ATP), concerning especially the ABCE1 binding site and its interactions with translational proteins, was probed by a method, which combines chemical cross linking with mass‐spectrometry (XL‐MS). Following this approach, it was demonstrated that ABCE1 remains bound at the translational GTPase‐binding site after ribosome splitting, contacting the S24e protein of the small subunit. The platform for the intensive contacts to the small ribosomal subunit is thereby provided by the unique helix‐loop‐helix motif of ABCE1. Notably, the FeScluster domain of ABCE1 undergoes a large rotational and translational rearrangement towards the small ribosomal subunit S12 upon nucleotide‐dependent closure of the NBDs. Thus, a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling processes, was reconstituted and structurally analyzed.
  • Die Proteinbiosynthese (Translation) ist ein für alle Lebewesen zentraler Prozess, bei dem in mehreren Schritten die genetische Information der DNA in die Aminosäuresequenz eines Proteins übersetzt wird. Die Translation setzt sich aus vier Phasen zusammen, der Initiation, der Elongation, der Termination und dem Ribosom‐Recycling. Dem Recycling der Ribosomen kommt dabei eine entscheidende Schlüsselfunktion zu, da es die Termination mit einer neu eingeleiteten Initiation verbindet und somit den Prozess der Proteinbiosynthese zu einem sich wiederholenden Zyklus macht. Der Prozess des Recyclings wird hierbei hauptsächlich von dem ATP‐bindenden Protein ABCE1 umgesetzt, welches das Ribosom (80S/70S) in seine große (60S/50S) und kleine (40S/30S) Untereinheit spaltet. Ribosom‐Recycling findet dabei nicht nur innerhalb eines korrekt ablaufenden Zyklus der Proteinbiosynthese statt, sondern auch an leeren Ribosomen sowie während der Ribosomen‐Biogenese und sogenannter mRNA surveillance‐Vorgänge, wenn die Translationsmaschinerie z.B. auf Grund von sekundären Strukturen der mRNA unwiderruflich gestoppt wird...

Download full text files

  • Kiosze-Becker_Dissertation_2016_UniBib.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kristin Kiosze-Becker
URN:urn:nbn:de:hebis:30:3-431400
Referee:Robert TampéORCiDGND, Jens WöhnertORCiDGND
Advisor:Robert Tampé
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/12/22
Release Date:2017/04/06
Page Number:138
HeBIS-PPN:415269008
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG