Untersuchung der molekularbiologischen Relevanz des Transkriptionsfaktors IRX1 im Kontext einer MLL-AF4-assoziierten Leukämie

  • Die Entstehung von Leukämien steht meist im Zusammenhang mit chromosomalen Translokationsereignissen, bei denen vor allem das MLL (Mixed Lineage Leukemia)-Gen auf Chromosom 11q23 involviert ist. Die häufigste Translokation, die eine Akute Lymphatische Leukämie (ALL) bei Kleinkindern auslöst, stellt die t(4;11)-Translokation dar. Die Rekombination der Chromosomen 11 und 4 führt hierbei zur Entstehung der beiden Fusionsproteine MLL-AF4 und AF4-MLL. Bisherige Studien, die den Krankheitsmechanismus hinter dieser ALL-Form untersuchten, identifizierten eine charakteristische Überexpression der HOXA-Gene als einen besonderen Treiber dieser Krankheitsentstehung. Durch die Deregulierung des HOX-Clusters durch das chimäre MLL-AF4-Protein wird ein Differenzierungs- und Apoptoseblock induziert und eine stetige Proliferation der Zellen gefördert. Arbeiten von Trentin et al. (2009) klassifizierten eine Subgruppe von t(4;11)-Patienten, die, im Gegensatz zu den bisher charakterisierten ALL-Leukämien, eine Reprimierung ihrer HOXA-Cluster aufwiesen und mit einer schlechteren Prognose assoziiert waren. Das Genexpressionsprofil dieser HOXAlow-Patienten sprach für einen neuen Krankheitsmechanismus. Allen HOXAlow-Patienten war zudem gemein, dass sie eine Überexpression des Transkriptionsfaktors IRX1 aufwiesen. Die Relevanz dieses Transkriptionsfaktors im Kontext einer t(4;11)-Leukämie wurde durch diese Doktorarbeit genauer untersucht. Durch Vorarbeiten mit transient exprimiertem IRX1 in HEK293T-Zellen wurde eine DNA-Microarray-Analyse durchgeführt, durch die ein Genexpressionsprofil (GEP) dieser Zellen im Vergleich zu Kontrollzellen (mit dem Leervektor transfiziert) erstellt wurde. Dies schuf die Grundlage für die Durchführung weiterer Experimente, die mit Hilfe von RT-PCR-, Chromatin-Immunpräzipitations-, Co-Immunpräzipitations- und Western Blot-Versuchen den Effekt und das Verhalten des IRX1-Proteins im Zusammenhang mit MLL-AF4, bzw. die Funktion von IRX1 alleine, charakterisieren sollten. Es zeigte sich, dass IRX1 eine Reprimierung der HOXA-Gene induziert und dieser Effekt über den aktivierenden Effekt des chimären MLL-AF4-Proteins dominiert. Dies geschah jedoch auf zwei unterschiedliche Wege, da zum einen das IRX1 in der Abwesenheit von MLL-AF4 nicht direkt an die HOXA-Gene binden kann und zum anderen durch MLL-AF4 eine Inkorporation des IRX1 in den Multiproteinkomplex des chimären Onkoproteins stattfindet und IRX1 dadurch direkt an die HOXA-Promotoren gelangt. Zudem wurden weitere direkte und indirekte Zielgene des IRX1 identifiziert. Zu ihnen zählen MEIS1, HOXB4 und EGR1-3. Durch die Erweiterung der Versuche durch Behandlungen mit dem pan-HDAC-Inhibitor Trichostatin A konnte belegt werden, dass MLL-AF4 vom Promotor seiner Zielgene dissoziiert und durch das endogene wt-MLL ersetzt werden kann. Trotz der inhibitorischen Wirkung des IRX1 auf das MLL-AF4 verursacht es eine Stabilisierung des MLL-AF4 an den Promotoren seiner Zielgene, was eine Dissoziation des Komplexes durch TSA verhindert. Die Applikation von TSA führt unabhängig von der vorherigen Konstitution (±IRX1) aber auch zu einer Normalisierung der HOXA-Expression. Die vorgelegten Daten verdeutlichen, dass IRX1 kausal für das GEP der HOXAlow-Patienten verantwortlich ist und durch seine Anwesenheit wichtige Regulatoren der Differenzierung und der Zellzyklusregulierung gestört werden. Zudem wurde der Benefit einer Histondeacetylaseinhibitor (HDACi)-Behandlung bei dieser Patientenkohorte hervorgehoben, da der inhibierende Effekt des IRX1 auf die HOXA-Gene aufgehoben und das wt-MLL in seiner Funktionsfähigkeit nicht beeinträchtigt wurde. Die Relevanz des IRX1 im Kontext einer t(4;11)-Leukämie wurde somit aufgeklärt und ein neuer Krankheits-mechanismus der HOXAlow-Patientenkohorte definiert. Ein weiterer Aspekt dieser Arbeit war die Etablierung eines Transfektionsprotokolls, um eine stabile Integrationen der Sleeping Beauty-Konstrukte in t(4;11)-Suspensionszellen zu ermöglichen. Bisher war es nur über lentivirale Methoden möglich, diese Zellen genetisch zu manipulieren. Durch die hier vorgestellte Methode können nun SEM-Zellen (B-Zell-Vorläuferzellen einer ALL mit t(4;11)) über Elektroporation stabil transfiziert und anschließend über Selektion zu einer homogenen Zellpopulation positiv transfizierter Zellen herangezogen werden. Hierdurch wird eine Übertragung bisheriger Methoden in ein leukämisches Zellsystem möglich, wodurch genetische Manipulationen in einer physiologischen Umgebung getestet werden können, ohne in S2-Laboratorien arbeiten zu müssen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alessa Carina KühnGND
URN:urn:nbn:de:hebis:30:3-443346
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Robert FürstORCiDGND
Advisor:Rolf Marschalek
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/06/28
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/20
Release Date:2017/06/28
HeBIS-PPN:404763928
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht