Biophysical studies of the translation-regulating add adenine riboswitch from Vibrio vulnificus

  • Bacterial gene expression can be regulated at mRNA level by cis-acting mRNA elements termed riboswitches. Riboswitches operate by conformational switching between a ligand-free and a ligand-bound state with different structures that either activate or inhibit gene expression. This PhD thesis contributes to the molecular level understanding of full-length purine riboswitches. It presents biophysical investigations on the ligand-dependent folding of the full-length translation-regulating add adenine riboswitch from the gram-negative human pathogenic marine bacterium Vibrio vulnificus (Asw). Asw has the typical bipartite riboswitch architecture with a 5’ ligand-sensing aptamer domain and a 3’ regulatory domain termed expression platform. According to the working hypothesis, Asw employs a unique thermodynamically-controlled 3-state conformational switching mechanism between an apoB, an apoA and a holo conformation to regulate translation initiation in a temperature-compensated manner. The two apo conformations are the putative translation-OFF states and the holo conformation is the putative translation-ON state of Asw. In the main project of this PhD thesis, an integrated nuclear magnetic resonance (NMR) and smFRET spectroscopic study of the full-length 112-nucleotide Asw (112Asw) was performed. The adenine-dependent folding of 112Asw was monitored at the level of base pairing interactions by NMR of the RNA imino protons, and at the level of three long-range intramolecular distances by smFRET of immobilized molecules. The integrated NMR and smFRET spectroscopic study of 112Asw yielded two major findings. First, NMR and smFRET both revealed that adenine binding to 112Asw impedes apoB formation by stabilizing the apoA secondary structure in the holo conformation without modulating tertiary structural interactions between the two riboswitch domains. This highlights the central role of competitive P1 and P4 helix formation at the interface of the aptamer and the expression platform for switching the accessibility of the ribosome binding site of 112Asw. Moreover, it strongly corroborates the hypothesis that purine riboswitches in general operate according to the key principle of a spatially decoupled secondary structural allosteric switch that proceeds without ligand-induced tertiary structural interactions between the aptamer domain and the expression platform. Second, it was uncovered by smFRET that the apoA and the holo conformation of 112Asw do not adopt a single folding state at near-physiological Mg2+ concentration. Instead, apoA and holo exhibit a persistent dynamic equilibrium between substates with an undocked (U), a short-lived docked (D1; ~s) and a Mg2+-bound long-lived docked (D2; ~10 s) aptamer kissing loop motif. In the holo conformation, the fractional population of the long-lived docked substate is ~2-fold increased compared to the apoA conformation, but undocked and docked substates are still comparably stable. The here described multiple folding states of the apoA and the holo conformation might have regulatory properties that are in between the apoB translation-OFF state and the holo-D2 translation-ON state. Additonally, an integrated NMR and smFRET analysis of 127-nucleotide Asw (127Asw) is presented. Compared to 112Asw, 127Asw is 3’-elongated by 15 nucleotides of the adenosine deaminase encoding sequence of the add gene from Vibrio vulnificus. 127Asw was chosen as mRNA template for future investigations of the interaction between Asw and the 30S ribosomal subunit. The NMR spectra of 127Asw demonstrated that 127Asw has the same overall secondary structure as 112Asw. Like for 112Asw, the combined NMR and smFRET analysis of 127Asw showed that adenine binding impedes apoB formation and stabilizes a long-lived docked aptamer kissing loop fold. However, compared to 112Asw, 127Asw has a destabilized aptamer kissing loop motif and a stabilized P4 helix in the expression platform. Finally, ligand-observed studies of the transient encounter complex between Asw and the near-cognate ligand hypoxanthine are described. By competition binding WaterLOGSY NMR experiments with hypoxanthine and the adenine analogue 2,6-diaminopurine, it could be shown that hypoxanthine binds to the same binding site of 112Asw as the cognate ligand adenine. The hypoxanthine binding constant measured with the WaterLOGSY method is in the low mM range (1.8 mM) and substantially exceeds the physiological hypoxanthine concentration in E. coli (~0.3 mM), thus ruling out that hypoxanthine binding can significantly impact the translational regulation of Asw in vivo. Also, preliminary FTIR difference spectra of 13C,15N-labelled and unlabelled hypoxanthine in complex with the pbuE adenine riboswitch aptamer and the xpt guanine riboswitch aptamer are discussed. These spectra showed a pattern of multiple IR bands that appeared to be characteristic for the respective complex.

Download full text files

Export metadata

Metadaten
Author:Sven Warhaut
URN:urn:nbn:de:hebis:30:3-443413
Place of publication:Frankfurt am Main
Referee:Harald SchwalbeORCiDGND, Mike HeilemannORCiDGND
Advisor:Harald Schwalbe
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/06/29
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/08
Release Date:2017/06/29
Tag:Riboswitch, RNA, translation, NMR, smFRET
Page Number:148
HeBIS-PPN:404826652
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht