Combining physiological data and context information as an input for mobile applications

  • Modern mobile devices offer a great variety of data that can be recorded. This broad range of information offers the possibility to tailor applications more to the needs of a user. Several context information can be collected, like e.g. information about position or movement. Besides integrated sensors, a broad range of additional sensors are available which can be connected to a mobile device. These additional sensors offer for example the possibility to measure physiological signals of a user.The human body offers a broad range of different signals. These signals have been used in several examples to conclude on the state of a user. The different signals allow to get a deeper insight into emotional or mental state of a user. Electrodermal activity gives feedback about the current arousal level of a user. Heart rate and heart rate variability can give an estimation about valence and mental load of a user. Several models exist to conclude from information like valence and arousal on different emotional states. Russell defined a two dimensional model, using valence and arousal to define affective states. Yerkes and Dodson developed a curve that expresses the relationship between arousal and performance of a user. Different examples exist, that use physiological signals to determine the user state for tailoring and adapting of applications. At the time of this work most of these examples did not address the usage of physiological signals for user state estimation in mobile applications and in mobile scenarios. Mobile scenarios lead to several challenges that need to be addressed. Influencing factors on physiological signals, like e.g. movement have to be controlled. Furthermore a user might be interrupted and influenced by environmental aspects. The combination of physiological data and context information might improve the interpretation of user state in mobile scenarios. In this work, we present a model that addresses the challenges of usage in mobile scenarios to offer an estimation of user state to mobile applications. To address a broad range of mobile applications, affective and cognitive state are provided as output. As input heart rate and electrodermal activity are used, as well as context information about movement and performance. Electrodermal activity is measured by a simple sensor that can be worn as a wristband. Heart rate is measured by a chest strap as used in sports. The input channels are transformed to affective and cognitive state based on a fuzzy rule based approach. With help of fuzzy logic, uncertainty can be expressed and the data continuously being processed. At the start, input channels are fuzzified by defined functions. After a that, a first fuzzy rule set transforms the input signals into values for valence, arousal and mental load. In a second step, these values and context information are transformed with another fuzzy rule set to values for affective and cognitive state. Affective state is based on the model of Russell, where valence and arousal are used to determine different emotional states. The output of the model are eight different affective states (alarmed, excited, happy, relaxed, tired, bored, sad and frustrated), which can have a high, medium, low or very low value as output. Cognitive state is determined based on mental load and context information about performance and movement. The output value can be very high, high, medium or low. The model was implemented as background service for Android devices. Different applications have been used for evaluation of the model. The model has been integrated in a multiplayer space shooter game, called ”Zone of Impulse”, which mainly benefits from the affective state. Cognitive state is more addressed in applications like a simple vocable trainer, which adapts difficulty based on user state. A study to evaluate different aspects of the model has been conducted. The study was designed to investigate the suitability of the model for mobile scenarios. The game ”zone of impulse” and the vocable trainer have been investigated in different configurations. Versions with integrated model have been compared to version of the applications without model, as well as versions of the model without context information. In total 41 participants took part in the study. A part of the participants had to do the tasks of the study in a mobile scenario, walking around several streets. The remaining participants had to do the tasks in a controlled environment in a sitting position. Different aspects were collected with ratings and questionnaires. Overall, participants rated that they did not feel impaired by the sensors they had to wear. The results showed, that the combination of physiological data and context information had an advantage against versions without context information in part of the ratings. A comparison between versions with and without model showed, that the subjective mental load ratings were significantly better for the version with model. Subjective ratings for aspects like fun, overstrain and support were mixed. When comparing the application versions in indoor and outdoor scenarios, no significant difference could be found, which leads to the assumption that there is no loss of interpretation quality in outdoor scenarios. The results also showed that the model seems to be robust enough to compensate the loss of an input channel, as there was no significant difference between application versions with full integrated model and versions with one channel lost. With the model developed in this work, context information and physiological data were combined to improve user state estimation. Furthermore pitfalls of user state estimation in mobile scenarios are overcome with this combination. However, the model has only been evaluated with a limited amount of applications and situations that mobile scenarios offer.

Download full text files

Export metadata

Metadaten
Author:Claudia StockhausenGND
URN:urn:nbn:de:hebis:30:3-443841
Place of publication:Frankfurt am Main
Referee:Detlef KrömkerGND, Ralf DörnerGND, Wolfgang Müller
Advisor:Detlef Krömker
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/11
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/14
Release Date:2017/07/11
Page Number:229
HeBIS-PPN:405400144
Institutes:Informatik und Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht