Unnatural amino acids as novel probes for ultrafast 2D-IR spectroscopy of proteins : towards real-time investigation of biomolecular dynamics and vibrational energy flow

  • Ultrafast protein dynamics are of great interest for understanding the molecular basis of biochemical function. One method to study structural changes with highest time-resolution starting in the femtosecond regime is 2D-IR spectroscopy. However its application to investigate protein dynamics both with high temporal and spatial resolution is currently limited to few biological systems with intrinsic chromophores. Spectral congestion, the contribution of many similar oscillators to the same signals, makes it difficult to draw conclusions about local structural dynamics in most other proteins. The aim of this thesis is to extend the application of 2D-IR spectroscopy to a wider range of proteins by introducing unnatural amino acids (UAAs) with azide or nitrile groups as site-specific vibrational probes, which absorb in the free spectral window between 1800 to 3000 cm-1 by using methods from chemical biology. In a comparative experimental study using FTIR and 2D-IR spectroscopy of single amino acids azidohomoalanine (Aha), a methionine analogue, was identified as preferred label. To demonstrate the application potential of UAAs as site-specific probes, Aha was then incorporated into different positions in a small globular protein. By using both FTIR and ultrafast 2D-IR it was shown, that indeed the local microenvironment as well as conformational fluctuations on picosecond timescale could be monitored with high spatial information. The azide moiety shows a shift of its absorption frequency depending on the polarity of its surrounding. Using this approach, different subensembles for the protein conformations with more polar and less polar environment around the vibrational probe can be distinguished. A second major application of site-specific labels is the study of vibrational energy transfer processes (VET), predicted to be relevant for allosteric communication in protein domains such as the PDZ domain. VET can be tracked with high spatial resolution using time-resolved IR spectroscopy by exciting a localized vibrational mode and probing separate modes in a two-colour 2D-IR experiment. To extend this kind of experiment to proteins, a specific donor-acceptor pair of two UAAs was introduced. It uses an azulene moiety as donor that can be excited in the visible range but deposits the excess energy by internal conversion into the vibrational modes of the ground state. In small peptides this VET pair was applied successfully, showing a distance-dependent energy transfer induced signal for VET through covalent bonds. These findings bare great promise for the direct observation of vibrational energy flow in proteins in real-time. Overall this thesis is the basis for extending the usability of 2D-IR spectroscopy to study structural dynamics in a wide range of proteins systems both with high temporal and spatial resolution.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Henrike Müller-Werkmeister
URN:urn:nbn:de:hebis:30:3-444146
Place of publication:Frankfurt am Main
Referee:Jens BredenbeckORCiD, Harald SchwalbeORCiDGND
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/04/28
Release Date:2017/07/31
Page Number:xiii, 199
HeBIS-PPN:41525535X
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht