Synthese und Untersuchung photoaktivierbarer zyklischer Oligonukleotide und sterisch anspruchsvoller photolabiler Schutzgruppen

  • Photolabile Schutzgruppen haben sich im Laufe der letzten Jahre als wertvolle Werkzeuge für die Untersuchung und Regulation biologischer Prozesse etabliert. Dabei wird die photolabile Schutzgruppe auf geeignete Weise mit Biomolekülen verknüpft, sodass deren Funktion temporär deaktiviert wird. Durch Bestrahlen mit Licht geeigneter Wellenlängen wird die photolabile Schutzgruppe entfernt und die Aktivität des Biomoleküls bzw. des zu beobachtenden Prozesses wiederhergestellt. Die Grundlagen der Verwendung photolabiler Schutzgruppen im biologischen Kontext wurden in zwei Pionierarbeiten 1977 von J.W. ENGELS und 1978 von J.F. HOFFMAN gelegt. Davon ausgehend haben sich zahlreiche Anwendungen photolabiler Schutzgruppen für biologisch interessante Molekülklassen entwickelt. Auf dem speziellen Gebiet der Nukleinsäuren wurden in den letzten Jahren einige fundamentale Mechanismen entdeckt und aufgeklärt, die nicht zuletzt auch therapeutisch interessante Anwendungsmöglichkeiten für photolabile Schutzgruppen bieten. Hierbei stellt das An-/Aus-Schaltverhalten von Nukleinsäuren jedoch ein nicht-triviales Problem dar. Selbst der gezielte Einbau einer einzelnen photolabilen Schutzgruppe in ein multifunktionales Oligonukleotid führt in der Regel nämlich nicht zu einer vollständigen Deaktivierung dessen. Ein multipler Einbau photolabiler Schutzgruppen entlang der Sequenz eines funktionellen Oligonukleotids schaltet die Hintergrundaktivität im deaktivierten Zustand zwar vollständig aus, allerdings müssen in diesem Fall hohe Bestrahlungsintensitäten bzw. –dauern für das Entfernen aller photolabilen Modifikationen angewendet werden. Dadurch geht zum einen die Zeitauflösung der lichtgeschalteten Prozesse verloren, nicht zuletzt erhöht sich dabei aber auch das Risiko von lichtinduzierten Schäden am biologischen System. Das Kernthema der vorliegenden Dissertation war es daher, neue Architekturen für den Aufbau photoaktivierbarer Oligonukleotide zu entwickeln. Das erste große Projekt basierte auf der Annahme, dass sich Duplexstrukturen, die für die Funktion vieler Nukleinsäuremechanismen fundamental sind, durch Zyklisierung von Oligonukleotiden global destabilisieren und damit effizienter photoaktivieren lassen, als durch lokalen Einbau einzelner photolabiler Schutzgruppen in Oligonukleotide. Hierzu wurden geeignete Alkin-Modifikationen an photolabile Nitrobenzyl- und Cumarin-Schutzgruppen angebracht und diese an die Nukleobasen verschiedener DNA-Bausteine geknüpft. Es ist daraufhin gelungen, Oligonukleotide mit je zwei photolabilen Alkin-Modifikationen herzustellen und diese intrasequentiell über eine Cu(I)-katalysierte Click-Reaktion mit einem Bisazid-Linker zu zyklisieren. Die so erhaltenen Oligonukleotide wiesen dramatisch erniedrigte Schmelzpunkte gegenüber den nativen Duplexen, sowie gegenüber den zweifach photolabil geschützten Oligonukleotiden auf. Dabei wurde außerdem festgestellt, dass Zyklisierungsparameter wie die Linkerlänge, -polarität und –flexibilität und die Wahl der photolabilen Schutzgruppe keinen signifikanten Einfluss auf die Duplexstabilität hat. Über einen Bereich von Ringgrößen zwischen ca. 11-21 Nukleotiden wurden die niedrigsten Duplexstabilitäten beobachtet. Sehr kleine, sowie große Ringe ab 30 Nukleotiden wiesen dagegen höhere Stabilität auf. Da mit dem entwickelten Zyklisierungskonzept auch mehrere Ringstrukturen innerhalb einer Oligonukleotidsequenz aufgebaut werden können, wurde im nächsten Schritt eine photoaktivierbare Variante des C10-Aptamers hergestellt, welches selektiv gegen Burkitt’s Lymphomzellen bindet. Dieses 90-mer DNA-Oligonukleotid wurde an drei Stellen photolabil Alkin-modifiziert und infolge mit einem Trisazid-Linker zu einer bizyklisierten Struktur verknotet. Mit Hilfe von Fluoreszenzmikroskopie-Experimenten konnte demonstriert werden, dass das durch eine solche „Photo-Klammer“ deaktivierte C10-Aptamer keine Bindungsaffinität gegenüber Burkitt’s Lymphomzellen aufweist, die Bindungsaktivität jedoch nach Belichten wiederhergestellt werden kann. Mit Atomkraftmikroskopie-Experimenten ist es darüber hinaus gelungen, die Photoaktivierung des verknäuelten C10-Aptamers mit molekularer Auflösung abzubilden. Mit diesem Ergebnis können nun lange funktionelle Oligonukleotide auf definierte Weise photoaktivierbar gestaltet werden, insbesondere auch dann, wenn keine (Informationen über) funktionelle Sekundärstrukturen existieren. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Patrick SeyfriedGND
URN:urn:nbn:de:hebis:30:3-469206
Place of publication:Frankfurt am Main
Referee:Alexander HeckelORCiDGND, Harald SchwalbeORCiDGND
Advisor:Alexander Heckel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2018/06/23
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/12/20
Release Date:2018/07/02
Tag:Aptamer; Oligonukleotid; Photolabile Schutzgruppen; Regulation der Genexpression; Zyklisierung
Page Number:XII, 214
HeBIS-PPN:433130725
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht