Entwicklung Zweiphotonen-spaltbarer Linker zur Erzeugung von lichtinduzierten Strangbrüchen in Oligonukleotiden und deren biologische Anwendung

  • Um molekulare Mechanismen in biologischen Prozessen zu verstehen, ist es unerlässlich biologisch aktive Verbindungen zu kontrollieren. Dabei spielt besonders die Aktivierung bzw. Desaktivierung von Genabschnitten eine zentrale Rolle in der gegenwärtigen chemischen, biologischen und medizinischen Forschung. Nukleinsäuren sind dabei offenkundige Zielmoleküle, da sie die Genexpression auf unterster Ebene regulieren und auf vielfältige Art und Weise an biologischen Prozessen beteiligt sind. Um solch eine genaue Steuerung zu erreichen, werden Nukleinsäuren häufig photolabil modifiziert und unter die Kontrolle von Licht gebracht. Da hochentwickelte Technologien es erlauben Photonen bestimmter Energie unter präziser räumlicher und zeitlicher Auflösung zu dosieren, ist Licht als nicht invasives Triggersignal ein besonders geeignetes Werkzeug um molekulare Prozesse zu kontrollieren. Die Verwendung photolabiler Schutzgruppen („cage“) ermöglicht es, diese lichtaktivierbaren Nukleinsäuren („caged compound“) herzustellen. Üblicherweise werden Oligonukleotide damit an funktionsbestimmenden Stellen versehen, woraufhin die Funktion der Oligonukleotide unterdrückt wird. Die biologische Aktivität kann durch Bestrahlung mit Licht wieder hergestellt werden, da die photolabile Schutzgruppe durch den Lichtimpuls abgespalten wird. Neben der zeitweiligen Maskierung der Nukleinsäureaktivität existiert auch eine Methode, die als „photoaktivierbarer Strangbruch“ (‘‘caged strand break‘‘) bezeichnet wird. Dabei werden mit Hilfe von photolabilen Linkern (‘‘Verknüpfer‘‘) lichtinduzierte Strangbrüche in Oligonukleotiden ausgelöst, um so beispielsweise die Struktur eines Nukleinsäurestrangs zu zerstören. Die Idee der photoaktivierbaren Strangbrüche ist nicht neu, dennoch werden photolabile Schutzgruppen überwiegend nach der erstgenannten Strategie verwendet. Im Rahmen dieses Promotionsvorhabens wurden neue photosensitive Linkerbausteine für Oligonukleotide entwickelt und hergestellt, welche sich vor allem im Hinblick auf die Anwendbarkeit in lebenden biologischen Systemen von den bisherigen photolabilen Linkern unterscheiden. Im ersten Projekt wurde ein nicht-nukleosidischer, photolabiler Linker, basierend auf dem Cumaringrundgerüst, entwickelt. Das Ziel war hier, vor allem, einen zweiphotonenaktiven Linker für biologische Anwendungen und Zweiphotonen-Fragestellungen nutzbar zu machen. Bisherige Zweiphotonen-Linker konnten hauptsächlich nur für Proteinverknüpfungen bzw. Neurotransmitter verwendet werden oder mussten chemisch umständlich (z.B. Click-Chemie) und postsynthetisch in Oligonukleotide eingeführt werden. Der neu entwickelte Zweiphotonen-Linker wurde als Phosphoramiditbaustein für die Oligonukelotid-Festphasensynthese synthetisiert, was einen problemlosen und automatisierten Einbau garantiert. Mit einem modifizierten Oligonukleotid konnten die photochemischen Eigenschaften des Linkers bestimmt und mit Hilfe eines fluoreszenzbasierten Verdrängungsassays und Lasertechniken der Zweiphotonen-Effekt visualisiert werden. Dazu wurde ein Hairpin-DNA-Strang hergestellt, welcher eine Linkermodifikation im Bereich der Loopregion enthält. Durch eine Thiolmodifikation am 5‘-Ende des Oligonukleotidstranges war es möglich, diesen in einem Maleimid-funktionalisierten Hydrogel zu fixieren. Ein DNA-Duplex mit einem Fluorophor/Quencherpaar und einer korrespondierenden Sequenz zum modifizierten Hairpin-Strang wurde ebenfalls dem System zugegeben, allerdings wurde dieser nicht fixiert, um Diffusion zu ermöglichen. Durch die räumliche Nähe des Fluorophors zum Quencher konnte im unbelichteten Zustand zunächst keine Fluoreszenz gemessen werden. Mit einem (Femtosekunden-)gepulsten Laser und dem damit verbundenen Bindungsbruch im Hairpin-Strang durch Zweiphotonen-Effekte wurde es dem fluoreszierenden Strang des DNA-Duplex ermöglicht, sich vom Quencher-Strang zu lösen und an den fixierten Strang zu hybridisieren. Das Photolyse-Ereignis konnte so in ein lokales Fluoreszenzsignal übersetzt und detektiert werden. Der eindeutige Beweis, dass es sich tatsächlich um ein Zweiphotonen-induziertes Ereignis handelt, konnte durch die dreidimensional aufgelöste Photolyse und über die quadratische Anhängigkeit des Fluoreszenzsignals von der eingestrahlten Laserleistung erbracht werden. Die generelle Kompatibilität des Cumarin-Linkers mit biologischen Systemen konnte in Zellkulturexperimenten gezeigt werden. Dazu wurde eine Transkriptionsfaktor-DNA Decoy-Strategie entwickelt, in der Linker-modifizierte DNA Decoys an regulatorische Transkriptionsfaktoren binden und diese aber auch photochemisch wieder freisetzen können („catch and release-Strategie“). Zellkulturexperimente, um mit dieser Methode das Transkriptionsfaktor-gesteuerte und endogene Gen für Cyclooxygenase-2 (COX2) zu regulieren, lieferten keine aussagekräftigen Ergebnisse. Daher wurden die verwendeten Zellen dahingehend manipuliert, sodass sie das Protein GFP (grün fluoreszierendes Protein) in Abhängigkeit von der Anwesenheit eines Transkriptionsfaktors exprimieren. Das so durch die Zellen verursachte Fluoreszenzsignal steht in direkter Abhängigkeit zur Decoy-Aktivität. Mit Hilfe modifizierter GFP-Decoys konnte hierbei eine Regulation auf Transkriptionsebene in biologischen Organismen erreicht werden. Mit dem Electrophoretic Mobility Shift Assay (EMSA), einer molekularbiologischen in vitro-Analysetechnik, wurden die Interaktionen zwischen modifizierten Decoys und dem Transkriptionsfaktor untersucht. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Xenia Weyel
URN:urn:nbn:de:hebis:30:3-469852
Place of publication:Frankfurt am Main
Referee:Alexander HeckelORCiDGND, Martin GriningerORCiDGND
Advisor:Alexander Heckel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2018/07/09
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/07/05
Release Date:2018/07/12
Tag:Zweiphotonen-Anregung; photolabile Schutzgruppen; photospaltbare Linker
Page Number:225
HeBIS-PPN:433677260
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht