Quantitative Analyse niedermolekularer Verbindungen in komplexen biologischen Matrizes mittels MALDI-Massenspektrometrie

  • Das Ziel der vorliegenden Arbeit war es, MALDI-Massenspektrometrie als robuste Analysenmethode für die quantitative Analyse niedermolekularer Verbindungen aus komplexen biologischen Matrizes zu etablieren. Zu Beginn der Arbeit wurden drei typische Fragestellungen im Bereich der Lebensmittelanalytik, der medizinischen Forschung und der klinischen Chemie ausgewählt, um die Methodik anhand dieser Modellsysteme zielgerichtet zu entwickeln und zu bewerten. Für jede dieser Fragestellungen wird routinemäßig ein hoher Probendurchsatz verlangt und damit werden hohe Anforderungen an die Probenvorbereitung gestellt, da diese einfach, schnell, reproduzierbar, Matrix-tolerant und automatisierbar sein muss um die Weiterentwicklung zur Hochdurchsatzanalytik zu erlauben. Der quantitative Nachweis von Melamin und seinen Derivaten wurde aufgrund des Aufkommens von Milchprodukten, die mit diesen Verbindungen kontaminiert waren, ein wichtiger Bestandteil der Analytik dieser Lebensmittel. Insbesondere an diesem Beispiel zeigte sich der Vorteil des Einsatzes von MALDI-Massenspektrometrie zur Analyse kleiner Moleküle. Aufgrund der höheren Toleranz gegenüber Puffern und Salzen konnte die Probenvorbereitungszeit der für die FDA entwickelten Methode zur Quantifizierung von Melamin in Milchpulver mittels LC-ESI von ca. 140 min auf 90 min reduziert werden, da auf die zeitaufwendige Flüssigchromatographie verzichtet werden konnte. So wurde Melamin mit einem LLOQ von 0,5 ppm quantifiziert, was unterhalb der Vorgaben der WHO (2,5 ppm in Milichpulver und 1 ppm in Babynahrung) lag. Cyanursäure, ein Derivat von Melamin welches für die Bildung schwerlöslicher Komplexe in der Niere mitverantwortlich gemacht wird, konnte ebenfalls mit der entwickelten MALDI-MS Methode quantifiziert werden. Allerdings war die ermittelte Bestimmungsgrenze mit 15 ppm um den Faktor 30 schlechter als bei Melamin. Die Nachweisgrenze bei MALDI-MS ist stark von der MALDI-Matrix abhängig und die Verwendung von Sinapinsäure war eine gute Kompromisslösung, um die Analyten in einem Spot im positiven und negativen Reflektormodus zu analysieren. Allerdings wurde diese Matrix zur Analyse von Analyten im positiven Reflektormodus entwickelt. Bislang wurden nur wenige Matrizes für MALDI-MS im negativen Reflektormodus beschrieben, um z.B. Säuren besser nachweisen zu können. Forschung in diesem Bereich wird neue Möglichkeiten zur Detektion negativ geladener kleiner Moleküle ergeben. Des Weiteren wurden im Rahmen dieser Arbeit auch Lösungen für klinische Fragestellungen wie etwa den Nachweis von Methylphenidat im Plasma und Gehirn von Ratten oder der Dried Blood Spot Analytik entwickelt. Bei beiden Methoden wurde jeweils nur eine einfache Flüssig-Flüssig-Extraktion zur Probenvorbereitung angewendet und sie ließen sich sehr gut auf Realproben übertragen. Methylphenidat konnte im Plasma im Konzentrationsbereich von 0,1-40 ng/mL und im Hirnhomogenat im Konzentrationsbereich von 0,4-40 ng/mL quantifiziert werden, was gut im Konzentrationsbereich der Realproben von mit Methylphenidat gefütterten Ratten lag. Dazu standen das Plasma und die Gehirne von fünf Ratten zur Verfügung. Es wurde eine lineare Korrelation zwischen der MPH-Konzentration im Gehirnhomogenat und im Plasma gefunden, was basierend auf den bis dato bekannten Literaturergebnissen ein zu erwartendes Ergebnis war, aber zukünftig mit einer größeren Anzahl von Versuchstieren verifiziert werden sollte. Während der Methodenentwicklung war auch bei diesem Projekt die Auswahl der MALDI-Matrix ausschlaggebend für den Erfolg der Messungen. Im MALDI-Massenspektrum interferierte das Signal des Natriumaddukts von CHCA mit dem Signal von MPH. Für dieses Problem kamen zwei mögliche Lösungen in Betracht. Erstens die Quantifizierung mit ClCCA als MALDI-Matrix, da hier keine Interferenzen auftraten. In ersten Vorversuchen konnte MPH so in einem Konzentrationsbereich von 1-48 ng/mL mit einer exzellenten Linearität von R2=0,9992 quantifiziert werden. Eine zweite mögliche Problemlösung war die Verwendung von Tandem-Massenspektrometrie. Hierzu wurden Fragmentionen-Massenspektren der überlagerten Signale aufgenommen. MPH und der verwendete interne Standard MPH-d9 zeigten dabei spezifische Fragmentionensignale, über die quantifiziert wurde. Da die Sensitivität um den Faktor 100 im Vergleich zu MS-Spektren von CHCA und ClCCA gesteigert werden konnte, wurde die weitere Methodenentwicklung basierend auf der Tandem-Massenspektrometrie mit der MALDI-Matrix CHCA durchgeführt. Überdies sind MS/MS-Versuche unter Verwendung von ClCCA als MALDI-Matrix für kleine Moleküle sehr erfolgsversprechend und sollten in weiteren Forschungsarbeiten durchgeführt werden. Die Dried Blood Spot Technik als alternative Probenvorbereitung bietet eine Reihe von Vorteilen, wie etwa den einer einfacheren Lagerung und eines einfacheren Transports einer großen Menge von Proben. Darüber hinaus werden nur wenige Mikroliter Blut verwendet, was vorteilhaft ist bei z B. klinischen Studien oder dem Therapeutic Drug Monitoring. Diese Art der Probennahme ist somit eine perfekte Ergänzung für weitere quantitative Analysen von Methylphenidat in Rattenblut. Den Ratten würden nur wenige Mikroliter Blut entnommen werden, was ihr Überleben sichert und der Transport der Proben auf dem Postweg wäre wesentlich einfacher. Um eine allgemein verwendbare DBS-MALDI-MS-Methode zu entwickeln, wurden neben Methylphenidat auch bekannte Analyten aus dem Bereich des Dopings sowie Lamotrigin, Coffein und Theophyllin als Beispiele für das Therapeutic Drug Monitoring verwendet. Es wurden verschiedene Lösungsmittel zur Extraktion eingesetzt, wobei sich eine Kombination aus Methyl-tert-Butylether und Ethanol, sowie Aceton als am besten geeignet erwies. Einige Analyten wie Coffein, Theophyllin und Lamotrigin wurden bis zu einer Konzentration von 0,5 μg/mL quantifiziert. Diese Bestimmungsgrenze ist bei Analyten aus dem Bereich des Dopings wie z.B. Salbutamol, Methylphenidat oder Clenbuterol, deren therapeutisch wirksame Plasmakonzentration im Bereich von wenigen Nanogramm pro Milliliter Blut liegt, um den Faktor 15-500 zu hoch. Diese Analyten waren bis zu einer Konzentration von 5 μg/mL im Blut mittels MALDI-MS problemlos nachweisbar. Um die Sensitivität zu erhöhen, ist es allerdings sinnvoll, die Extraktion zukünftig für die einzelnen Analyten zu optimieren, sie mittels Festphasenextraktion oder LC anzureichern und MS/MS-Spektren aufzunehmen. Für die Analyten Coffein, Theophyllin und Lamotrigin, deren therapeutisch wirksame Plasmakonzentration im ein- bis zweistelligen Mikrogramm-pro-Milliliter Bereich liegt, eignete sich die entwickelte Methode sehr gut. Es wurde eine Methodenvalidierung durchgeführt, wobei die validierten Parameter den Vorgaben der FDA entsprachen. Da die Auswahl der MALDI-Matrix bei den verschiedenen Methodenentwicklungen jeweils ein kritischer Faktor war, wurden abschließend eine Auswahl von Analyten mit einer Molekülmasse bis ca. 600 Da mit verschiedenen MALDI-Matrizes präpariert. Ein Großteil der Analyten wurde am sensitivsten mit ClCCA nachgewiesen. Im Rahmen dieser Versuche wurde auch erstmals ein Strukturanalogon von ClCCA, und zwar ClCCA-Tetrazol, als alternative MALDI-Matrix eingesetzt, bei welchem die Carboxylgruppe durch einen Tetrazolring ausgetauscht wurde. Diese zeigte eine sehr homogene Kristallisation und für einige Analyten eine bis zu Faktor 3 höhere Signalintensität im Vergleich zu ClCCA. Außerdem war auffällig, dass einige Analyten unter bestimmten Präparationsbedingungen wie z B. der Graphite Supported Preparation sensitiver mittels MALDI-MS nachweisbar waren. Bei anderen Analyten verschlechterten sich die Analysenergebnisse. Graphit verändert stark die Kristallisation der MALDI-Matrix und es wird vermutet, dass sich dies auf den Einbau der Analyten in die Matrixkristalle auswirkt. Es konnte bislang aber noch nicht abschließend geklärt werden, wie genau die Präparation der Proben Einfluss auf den Einbau der Analyten in die Matrix nimmt. Eine Untersuchung dieser Phänomene sollte daher Gegenstand weiterer Forschungsprojekte sein. Zusammenfassend stellt die MALDI-Massenspektrometrie eine schnelle und robuste Methode zur Quantifizierung einer Vielzahl kleiner Moleküle in komplexen biologischen Matrizes dar.

Download full text files

  • Dissertation_Anne_Arnold.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anne ArnoldGND
URN:urn:nbn:de:hebis:30:3-475481
Referee:Michael KarasGND, Jochen KleinORCiDGND
Advisor:Michael Karas
Document Type:Doctoral Thesis
Language:German
Year of Completion:2018
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/02/09
Release Date:2018/09/21
Page Number:205
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:438385454
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG