Application and method development in computational systems biology: Petri nets to study knockouts and dynamics of Salmonella infection

  • Antimicrobial resistance became a serious threat to the worldwide public health in this century. A better understanding of the mechanisms, by which bacteria infect host cells and how the host counteracts against the invading pathogens, is an important subject of current research. Intracellular bacteria of the Salmonella genus have been frequently used as a model system for bacterial infections. Salmonella are ingested by contaminated food or water and cause gastroenteritis and typhoid fever in animals and humans. Once inside the gastrointestinal tract, Salmonella can invade intestinal epithelial cells. The host cell can fight against intracellular pathogens by a process called xenophagy. For complex systems, such as processes involved in the bacterial infection of cells, computational systems biology provides approaches to describe mathematically how these intertwined mechanisms in the cell function. Computational systems biology allows the analysis of biological systems at different levels of abstraction. Functional dependencies as well as dynamic behavior can be studied. In this thesis, we used the Petri net formalism to gain a better insight into bacterial infections and host defense mechanisms and to predict cellular behavior that can be tested experimentally. We also focused on the development of new computational methods. In this work, the first realization of a mathematical model of the xenophagic capturing of Salmonella enterica serovar Typhimurium in epithelial cells was developed. The mathematical model expressed in the Petri net formalism was constructed in an iterative way of modeling and analyses. For the model verification, we analyzed the Petri net, including a computational performance of knockout experiments named in silico knockouts, which was established in this work. The in silico knockouts of the proposed Petri net are consistent with the published experimental perturbation studies and, thus, ensures the biological credibility of the Petri net. In silico knockouts that have not been experimentally investigated yet provide hypotheses for future investigations of the pathway. To study the dynamic behavior of an epithelial cell infected with Salmonella enterica serovar Typhimurium, a stochastic Petri net was constructed. In experimental research, a decision like "Which incubation time is needed to infect half of the epithelial cells with Salmonella?" is based on experience or practicability. A mathematical model can help to answer these questions and improve experimental design. The stochastic Petri net models the cell at different stages of the Salmonella infection. We parameterized the model by a set of experimental data derived from different literature sources. The kinetic parameters of the stochastic Petri net determine the time evolution of the bacterial infection of a cell. The model captures the stochastic variation and heterogeneity of the intracellular Salmonella population of a single cell over time. The stochastic Petri net is a valuable tool to examine the dynamics of Salmonella infections in epithelial cells and generate valuable information for experimental design. In the last part of this thesis, a novel theoretical method was introduced to perform knockout experiments in silico. The new concept of in silico knockouts is based on the computation of signal flows at steady state and allows the determination of knockout behavior that is comparable to experimental perturbation behavior. In this context, we established the concept of Manatee invariants and demonstrated the suitability of their application for in silico knockouts by reflecting biological dependencies from the signal initiation to the response. As a proof of principle, we applied the proposed concept of in silico knockouts to the Petri net of the xenophagic recognition of Salmonella. To enable the application of in silico knockouts for the scientific community, we implemented the novel method in the software isiKnock. isiKnock allows the automatized performance and visualization of in silico knockouts in signaling pathways expressed in the Petri net formalism. In conclusion, the knockout analysis provides a valuable method to verify computational models of signaling pathways, to detect inconsistencies in the current knowledge of a pathway, and to predict unknown pathway behavior. In summary, the main contributions of this thesis are the Petri net of the xenophagic capturing of Salmonella enterica serovar Typhimurium in epithelial cells to study the knockout behavior and the stochastic Petri net of an epithelial cell infected with Salmonella enterica serovar Typhimurium to analyze the infection dynamics. Moreover, we established a new method for in silico knockouts, including the concept of Manatee invariants and the software isiKnock. The results of these studies are useful to a better understanding of bacterial infections and provide valuable model analysis techniques for the field of computational systems biology.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jennifer HannigORCiD
URN:urn:nbn:de:hebis:30:3-480146
Place of publication:Frankfurt am Main
Referee:Ina KochORCiD, Ivan ĐikićORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/10/31
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/10/25
Release Date:2018/11/02
Page Number:XXII, 159
HeBIS-PPN:438470990
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht