Enhanced excitability and structural plasticity of maturing adult-born granule cells after LTP induction in the hippocampus

  • Throughout the entire life, new neurons of the granule cell type (GCs) are continu-ously generated in the mammalian hippocampal dentate gyrus (DG). As a part of the limbic system, the hippocampus is concerned with spatial and declarative memory for-mation. Increasing evidence exists, that adult born granule cells (ABGCs) play an im-portant role in this process. An especially critical period, when these ABGCs are 4-6 weeks old, has come into the focus of research. It is during this specific time-span that the ABGCs express enhanced excitability and synaptic plasticity as well as a lowered threshold for the induction of long term potentiation (LTP), a mechanism associated to learning and memory formation. This study investigates the time course and dynamics of synaptic integration in ABGCs and mature GCs together with which differences exist between them at various cell ages. Furthermore, spine plasticity following high frequency stimulation (HFS) is analysed focusing on a critical phase of enhanced excitability in 4-5 week old ABGCs. In this thesis, two approaches at studying the synaptic integration and structural plas-ticity of ABGCs in rats were investigated. This work was performed on fixed brain ma-terial that was provided by two laboratories that performed the in vivo labelling, stimu-lation procedures and brain fixation. In the first project, 6, 12 and 35 weeks old XdU-labelled ABGCs were studied. Adult rats were exposed to an enriched environment and received unilateral intrahippocampal delta burst stimulation (DBS) and LTP induction. The ABGCs and a control population of mature GCs were immunohistologically ana-lysed for Egr1 (early growth response 1) expression. Egr1 is an immediate early gene (IEG), expressed after LTP induction and marks neuronal excitation. It was found, that unilateral stimulation of the perforant path of the hippocampus re-sults in an increase of Egr1 expression in ABGCs of both hemispheres. It could be shown that the enhanced expression intensity of Egr1 in ABGCs is not a usual state of young GCs but a reaction to DBS. ABGCs from unstimulated control animals and mature GCs expressed lower levels of Egr1. Interestingly, the stimulation induced a similar degree of Egr1 expression intensity in all ABGC age groups. Furthermore, it was found that young ABGC from the infrapyramidal dentate gyrus (DG) express a higher excita-bility than those from the suprapyramidal DG. In the second project, fixed brain sections were analysed. They stemmed from rat brains containing 28 and 35 day old ABGC that had been transfected with intrahippo-campal RV-GFP (retroviral-green fluorescent protein) injections and had received uni-lateral high frequency stimulation of the medial perforant path in vivo. Nuclear Egr1 expression intensity was analysed in a cell specific manner. Dendritic spine size was measured in the inner-, middle- and outer molecular layer (IML, MML, OML). It was found that in ABGC, stimulation induced Egr1 expression increase is lower than in ma-ture GC. Following HFS, a significant homosynaptic spine enlargement was observed in the MML indicating homosynaptic LTP, while heterosynaptic spine shrinkage was found in the adjacent IML and OML. The latter corresponds to heterosynaptic long term depression (LTD). Homosynaptic plasticity describes an input-specific potentiation of synapses that received direct activation. The weakening of synapses not stimulated dur-ing homosynaptic potentiation is oppositely coined heterosynaptic plasticity1. A positive correlation between an increase in nuclear Egr1 expression intensity and spine enlargement due to homosynaptic plasticity induced by HFS could be shown. Concomitant heterosynaptic plasticity, as indicated by spine shrinkage was observed. Spine shrinkage in the IML and OML showed a negative correlation to a decrease in Egr1 intensity. Taken together, the results provide detailed information on the gradual integration of ABGC with ongoing maturation. Cell specific proof for homo- and heterosynaptic plas-ticity following HFS was found in the critical period of synaptic integration of ABGCs.
Metadaten
Author:Marie-Violet Hawkridge
URN:urn:nbn:de:hebis:30:3-488193
Place of publication:Frankfurt am Main
Referee:Stephan SchwarzacherORCiDGND, Frank Nürnberger
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/01/20
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/12/20
Release Date:2019/01/25
Tag:adult neurogenesis; egr-1; hippocampus; synaptic plasticity
Page Number:VIII, 115
HeBIS-PPN:441504094
Institutes:Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht