Atmospheric nanoaerosols: from instrumentation to organic new particle formation

  • Atmospheric nanoaerosols have extensive effects on the Earth’s climate and human health. This cumulative work focuses on the development and characterization of instrumentation for measuring various parameters of atmospheric nanoaerosols, and its use to understand new particle formation from organic precursors. The principal research question is, how the chemical composition of nanoaerosol particles can be measured and how atmospheric chemistry influences aerosol processes, especially new particle formation and growth. Therefore, nanoaerosols are investigated under various aspects. More specifically, an instrument is developed to analyze nanoparticles, and field as well as chamber studies are conducted. The main project is the instrument development of the Thermal Desorption Differential Mobility Analyzer (TD-DMA, project 1, Wagner et al. (2018)). This instrument analyzes the chemical composition of small aerosol particles. By characterization and testing in chamber experiments, it is proven to be suitable for the analysis of freshly nucleated particles. The second project (Wagner et al. (2017)) applies a broad spectrum of aerosol measurement instruments for the characterization of aerosol particles produced by a skyscraper blasting. A comprehensive picture of the particle population emitted by the demolition is obtained. Project 3 (K¨urten et al. (2016)) is also an ambient aerosol measurement, focusing of new particle formation in a rural area in central Germany, and the ability of a negative nitrate CI-APi-TOF to detect various substances in atmosphere. Project 4 (Heinritzi et al. (2016)) is a characterization of the negative nitrate CI-APi-TOF used in projects 1, 3, 5, 6, 7 and 8. The following projects focus on understanding new particle formation from atmospherically abundant organic precursors. Key instruments comprise the negative nitrate CI-APiTOF for gas-phase measurements of the nucleating species, and various sizing and counting instruments for quantifying the particle formation and growth. Project 5 (Kirkby et al. (2016)) shows that biogenic organic compounds formed from alpha-pinene can nucleate on their own without the influence of e.g. sulfuric acid. Project 6 (Tr¨ostl et al. (2016)) describe the subsequent growth of these particles. Project 7 (Stolzenburg et al. (2018)) covers the temperature dependence of this growth and in project 8 (Heinritzi et al. (2018)), the suppressing influence of isoprene on the new particle formation is assessed.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andrea Christine WagnerGND
URN:urn:nbn:de:hebis:30:3-516056
Referee:Joachim CurtiusORCiD, Paul M. WinklerORCiD
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2019/11/04
Page Number:244
HeBIS-PPN:455752419
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht