Identification of IRF1 as critical dual regulator of Smac mimetic-induced apoptosis and inflammatory cytokine response

  • Smac (second mitochondria-derived activator of caspase) mimetics are considered as promising anticancer therapeutics and used to induce apoptosis by antagonizing inhibitor of apoptosis proteins, which are often abundantly expressed in cancer cells. Here, we identify interferon regulatory factor 1 (IRF1) as a novel critical regulator of Smac mimetic BV6-induced apoptosis and proinflammatory cytokine secretion with impact on the immune response. IRF1 knockdown rescues cells from BV6-induced apoptosis and attenuates BV6-stimulated upregulation of tumor necrosis factor-α (TNFα), indicating that IRF1 mediates BV6-triggered cell death, at least in part, by inducing TNFα. This notion is supported by data showing that exogenous supply of TNFα restores BV6-induced cell death in IRF-knockdown cells. Interestingly, IRF1 selectively controls the induction of nuclear factor-κB (NF-κB) target genes, as IRF1 depletion attenuates BV6-stimulated upregulation of TNFα and interleukin-8 (IL-8) but not p100 and RelB. Concomitant knockdown of IRF1 and p65 cooperate to inhibit BV6-induced cell death, implying a cooperative interaction of IRF1 and NF-κB. In addition, IRF1 silencing hampers TNFα induction by TNFα itself as an another prototypical NF-κB stimulus. Importantly, IRF1 depletion impedes BV6-stimulated secretion of additional proinflammatory cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-8, IL-6 and monocyte chemoattractant protein-1, and migration of primary monocytes to BV6-treated tumor cells. In conclusion, this identification of IRF1 as a dual regulator of BV6-induced apoptosis and inflammatory cytokine secretion provides novel insights into determinants of sensitivity towards Smac mimetic and possible implications of Smac mimetic treatment on tumor microenvironment and immune response.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Ines Eckhardt, Andreas WeigertORCiDGND, Simone FuldaORCiDGND
Pubmed Id:
Parent Title (German):Cell death and disease
Publisher:Macmillan Publishers Limited
Document Type:Article
Date of Publication (online):2014/12/11
Date of first Publication:2014/12/11
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2020/05/03
Page Number:10
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung 4.0