Time course of traumatic neuroma development/role of electrical stimulation in inhibition of neuroma formation in a rat limb amputation model

  • Limb stump pain after amputation, due to sensitized neuromas, is a common condition that can cause a great deal of suffering in affected patients. Treatment is difficult, requiring a multidisciplinary approach that is often unsatisfactory. One treatment used to mitigate pain is electrical stimulation (EStim), administered using several different therapeutic approaches. The research described in this dissertation sought to characterize changes in peripheral nerve morphology, and neuroma formation, following limb amputation, with an eye toward developing better treatment strategies, that intervene before neuromas are fully formed. Another focus of this study was to evaluate the effect EStim has on changes in peripheral nerve morphology, and neuroma formation, following limb amputation. Right forelimbs of 42 male Sprague Dawley rats were amputated. At 3, 7, 28, 60 and 90 days post amputation (DPA) 6 limb stumps, in each group, were harvested and changes in peripheral nerve morphology, and neuroma formation were measured. In addition, limb stumps of 6 EStim treated, 6 sham-treated (deactivated EStim devices), and 6 non-treated rats were harvested at 28 DPA. Analysis revealed six distinct morphological characteristics of peripheral nerves during nerve regrowth and neuroma development; 1) normal nerve, 2) degenerating axons, 3) axonal sprouts, 4) unorganized bundles of axons in connective tissue, 5) unorganized axon growth into muscles, and 6) unorganized axon growth into fibrotic tissue (neuroma). At the early stages (3 & 7 DPA), normal nerves could be identified throughout the limb stump tissues and small areas of axonal sprouts were present near the distal tip of the stumps. Signs of degenerating axons were evident from 7 to 90 DPA. From day 28 on, variability of nerve characteristics, with signs of unorganized axon growth into muscle and fibrotic tissue, and neuroma formation, became visible in multiple areas of stump tissue. These pathological features became more evident at 60 and 90 DPA. EStim treated stumps revealed neuroma formation in 1 out of 6 animals, whereas in sham and controls, neuroma formation was seen in 4 out of 6 stumps respectively. We were able to identify 6 separate histological stages of peripheral nerve regrowth and neuroma formation over 90 days following amputation. Axonal regrowth was observed as early as 3 DPA, and signs of unorganized axonal growth and neuroma formation were evident by 28 DPA. Our observations suggest that EStim-based treatment and/or other prevention strategies might be more effective if administered in the initial dynamic stages of neuroma development.

Download full text files

Export metadata

Author:Lukáš Pindur
Place of publication:Frankfurt am Main
Referee:John Howard BarkerORCiD, Dirk HenrichORCiDGND
Advisor:John Howard Barker
Document Type:Doctoral Thesis
Date of Publication (online):2020/06/12
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/06/03
Release Date:2020/06/19
Page Number:55
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht