Regulation of inflammation and autophagy: Role of CD14 in biglycan-mediated sterile inflammation and impact of ABIN-1 on selective autophagy

  • The innate immune system is the first line of host defense that senses invading pathogens by various surveillance mechanisms, involving pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Furthermore, in response to stress, tissue injury or ischemia, cells release endogenous danger-associated molecular patterns (DAMPs) which activate PRRs in order to prompt an effective immune response. Activation of PRRs by DAMPs initiates signaling transduction pathways which drive sterile inflammation by the production of pro-inflammatory effector molecules. Biglycan, a class I small leucine-rich proteoglycan (SLRP), is proteolytically released from the extracellular matrix (ECM) in response to tissue stress and injury or de novo synthesized by activated macrophages. In its soluble form, biglycan operates as an ECM-derived DAMP and triggers a potent inflammatory response by engaging TLR2 and TLR4 on immune cells. By selective utilization of TLR2/4 and the TLR adaptor molecules adaptor molecule myeloid differentiation primary response gene 88 (MyD88) or TIR domain-containing adaptor-inducing interferon-β (TRIF) biglycan differentially regulates the production of TLR downstream mediators or inflammatory molecules. In this way, biglycan triggers the activation of mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (Erk) and nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) in a primarily MyD88-dependent manner. In contrast, biglycan induces the expression of (C–C motif) ligand (CCL)5 and chemokine (C-X-C motif) ligand (CXCL)10 over TLR4/TRIF, heat shock protein 70 (HSP70) production over TLR2 and the synthesis of tumor necrosis factor (TNF)-α, CCL2 and CCL20 by utilizing TLR2/4/MyD88. As a consequence, biglycan promotes the recruitment of immune cells such as neutrophils, T cells, B cells and macrophages into the inflamed tissue. Research over the past years showed that biglycan-induced inflammation is involved in the pathogenesis of various inflammatory diseases such as lupus nephritis (LN), sepsis and renal ischemia/reperfusion injury (IRI), whereby genetic deletion of biglycan or TLR2/4 alleviated disease outcome. Unfortunately, the selective interaction of biglycan to TLRs and TLR adaptors complicates the identification of an efficient pharmacological target in biglycan-mediated inflammation. Yet, the necessity of possible co-receptors in biglycan signaling such as cluster of differentiation 14 (CD14) which was found in a high molecular complex with biglycan was not addressed so far. In the first part of the present study, by utilizing primary peritoneal murine macrophages we demonstrated that the biglycan-induced expression and synthesis of TNF-α and CCL2 via TLR2/4/MyD88, CCL5 through TLR4/TRIF and HSP70 over TLR2 is blunted in CD14 deficient mice, proving that CD14 is essential in TLR2- and TLR4-mediated biglycan signaling. Pre-incubation of macrophages with an anti-CD14 antibody significantly reduced the protein levels of TNF-α, CCL2, CCL5 and HSP70. In line with these data, pharmacological inhibition of CD14 alleviated the transcriptional activation of NF-κB by biglycan in HEK-Blue cells expressing hTLR2/CD14 as well as hTLR4/CD14/MD2 supporting CD14-dependency for biglycan/TLR2/4 signaling. Western blot analysis of phosphorylated p38, p44/42 and NF-κB in WT and CD14 deficient mice revealed that activation of biglycan-mediated TLR downstream signaling is CD14-dependent. Accordingly, biglycan-induced activation and nuclear translocation of p38, p44/42 and NF-κB was blocked in Cd14-/- mice as analyzed by confocal microscopy. Co-immunoprecipitation studies combined with microscale thermophoresis analysis showed that biglycan is in complex with CD14 in macrophages and in vitro binds directly with high affinity to CD14, thereby sustaining the concept that CD14 is a novel co-receptor in biglycan-mediated inflammation. Additionally, we provided proof-of-principle of our concept in an in vivo mouse model of renal IRI. Transient overexpression of biglycan in WT mice exacerbated the expression and production of TNF-α, CCL2, CCL5 and HSP70 in a CD14-dependent manner. Interestingly, pLIVE or pLIVE-hBGN-injected Cd14-/- mice displayed lower chemo- and cytokine levels in reperfused kidneys as compared to respective WT controls during renal IRI (30 h), indicating a renoprotective effect by CD14 deficiency. Flow cytometry analysis of kidney homogenates underlined the pivotal effect of CD14 in biglycan signaling as biglycan-mediated infiltration of CD11b- and F4/80-positive renal macrophages was abolished in Cd14-/- mice. Additionally, pLIVE or pLIVE-hBGN-injected CD14 deficient mice displayed lower numbers of renal CD11b- and F4/80-positive cells during renal IRI compared to WT mice. Analysis of F4/80- and CD38-positive cells isolated from mononuclear cell extracts from kidney homogenates of pLIVE or pLIVE-hBGN-injected WT and Cd14-/- mice revealed that biglycan triggers the polarization of pro-inflammatory M1 macrophages in a CD14-dependent manner. In line with this, Cd14-/- mice, either injected with pLIVE or pLIVE-hBGN, showed less F4/80- and CD38-positive cells during renal IRI than the respective WT control. As a corroboration of our data PAS-stained renal sections of pLIVE- or pLIVE-hBGN-injected WT or Cd14-/- mice uncovered that biglycan worsens tubular damage in IRI-subjected mice via CD14. At the same time, tubular damage was significantly reduced in IRI-subjected Cd14-/- mice as compared to WT mice. In correlation with these data, serum creatine levels were increased in pLIVE-hBGN-injected WT mice during renal IRI. In contrast, serum creatine levels were significantly less increased in pLIVE- or pLIVE-hBGN-injected Cd14-/- mice than in WT littermate controls. In conclusion we demonstrated that CD14 is a new high affinity ligand for biglycan-mediated pro-inflammatory signaling over TLR2 and TLR4 in macrophages. In vivo, soluble biglycan triggers the expression of various inflammatory mediators by utilizing the co-receptor CD14. Ablation of CD14 abolishes biglycan-induced renal macrophage infiltration and M1 macrophage polarization as well as overall kidney function by reduced tubular damage and serum creatinine levels. Therefore, this study identifies CD14 as a promising therapeutic target to ameliorate biglycan-induced inflammation. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Heiko RödigGND
URN:urn:nbn:de:hebis:30:3-551525
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Josef PfeilschifterGND
Advisor:Rolf Marschalek
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/07/15
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/07/13
Release Date:2020/07/24
Page Number:139
HeBIS-PPN:46718996X
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht