Structural mechanisms of binding kinetics

  • Human protein kinases play essential roles in cellular signaling pathways and - if deregulated - are linked to a large diversity of diseases such as cancer and inflammation or to metabolic diseases. Because of their key role in disease development or progression, kinases have developed into major drug targets resulting in the approval of 52 kinase inhibitors by the Food and Drug Administration (FDA) so far. Within the drug discovery process, the affinity of the inhibitors is the parameter that is used most often to predict the later efficacy in humans. However, the kinetics of binding have recently emerged as an important but largely neglected factor of kinase inhibitor efficacy. To efficiently suppress a signaling pathway, the targeted kinase needs to be continuously inhibited. Thus, it has been hypothesized that fast binding on-rates and slow off-rates would be the preferred property of an efficacious inhibitor. Despite optimizing the potency of kinase inhibitors, in the past decade optimization of kinetic selectivity has therefore gained interest as a molecule cannot be active unless it is bound, as Paul Ehrlich once stated. There is increasing evidence of correlations between prolonged drug-target residence time and increased drug efficacy, and that inhibitor selectivity in cellular contexts can be modulated by altered residence times. In order to contribute to the understanding of the effect of long residence times on cellular targets we initiated two projects. The first of these projects is related to the STE20 kinase Serine/threonine kinase 10 (STK10) and its close relative STE20 like kinase (SLK) which have been reported to be frequent off-targets for kinase inhibitors used in the clinics. Also, an inhibition of STK10 and SLK has been linked to a common side-effect of severe skin rash developed upon treatment with the EGFR inhibitor erlotinib, but not gefitinib and the severity of this rash correlated with the treatment outcome, which fits the known biology of STK10 and SLK to be regulators of lymphocyte migration and PLK kinases. However, there are yet no explanations why these two proteins show such high hit-rates across the kinome among the kinase inhibitors. Using structural analysis, we identified the flexibility of STK10 to be the main reason for this hit-rate. The observed strong in vitro potencies did however not translate to the cellular system which is why we investigated the inhibitors residence time on STK10. We found the same flexibility to be the main reason for slow residence times among several inhibitors. We observed large rearrangements in the hydrophobic backpocket of STK10 including the αC, the P-loop enclosing the inhibitor like a lid and strong π-π-stackings to be the main reasons for prolonged residence times on STK10. Interestingly, we observed an increased residence time for erlotinib, which showed skin-related side-effects, giving rise whether the binding kinetics should be investigated for weak cellular off-target effects in future drug discovery efforts. In the second project we initiated, we illuminate a structural mechanism that allows kinetic selection between two closely related kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). Using an inhibitor series designed to probe the mechanism, residence times measured in vitro and in cells showed a strong correlation. Crystal structures and mutagenesis identified hydrophobic interactions with L567, adjacent to the DFG-motif, as being crucial to kinetic selectivity of FAK over PYK2. This specific interaction was observed only when the DFG-motif was stabilized into a helical conformation upon ligand binding to FAK. The interplay between the protein structural mobility and ligand-induced effect was found to be the key regulator of kinetic inhibitor selectivity for FAK over PYK2. These two projects showed that the parameter residence time should be considered for different problems among the drug discovery process. First, in an open in vivo system not only the potency of a drug alone, but as well its residence time might be of importance. Here we showed that the weak cellular potency translated to prolonged residence times for several inhibitors in cells and established a link between the phenotypic outcome of skin rash after erlotinib treatment and the residence time of this inhibitor on STK10 in cells. On the other hand, medicinal chemistry efforts should consider structure kinetic relationships (SKR) in the optimization process and aim to understand the molecular basis for prolonged target residence times. Here, we showed that a hydrophobic interaction that is enforced upon inhibitor binding is crucial for an unusual helical DFG conformation which arrests the inhibitor and prolongs its residence time providing the molecular basis for understanding the kinetic selectivity of two closely related protein kinases. Establishing the SKRs will help medicinal chemists to kinetically optimize their drug candidates to select a suitable molecule to proceed into further optimization programs. Hence, the projects showed that the target residence time parameter needs to be considered both as a molecular optimization parameter to improve compound potency and binding behavior as well as a parameter to be understood for proceeding to the open system of in vivo models to later modulate the in vivo efficacy of protein kinase targeting drugs.

Download full text files

Export metadata

Metadaten
Author:Benedict-Tilman BergerORCiDGND
URN:urn:nbn:de:hebis:30:3-563951
Place of publication:Frankfurt am Main
Referee:Stefan KnappORCiD, Eugen ProschakORCiDGND
Advisor:Stefan Knapp, Susanne Müller-Knapp
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/10/20
Date of first Publication:2020/10/20
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/10/19
Release Date:2020/10/23
Tag:Binding Kinetics; Protein Kinase
Page Number:144
HeBIS-PPN:470877189
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht