Cryo electron microscopy study on gating mechanism of the lipid-modulated serotonin receptor

  • Over the last decade, cryo-EM has developed exponentially due to improvements in both hardware (“machine”-based) and software (“algorithm”-based). These improvements have pushed the best achievable resolutions closer to atomic level, bridging “gaps” not covered by other biophysical techniques, and allowing more difficult biological questions to be addressed. Thus, this PhD project was designed and constructed to apply cryo-EM to answer biological questions, while allowing simultaneous cryo-EM method development. The biological focus of this research is pentameric ligand-gated ion channels (pLGICs), specifically the serotonin receptor type-3 receptor (5HT3R), which also belongs to the Cys-loop receptor family. 5HT3R plays an important role in fast synaptic signal transduction in response to agonist and antagonist binding. Binding to its native ligand results in opening of the channel at the transmembrane domain, allowing cations to pass through, resulting in membrane depolarization and conversion of the chemical signal into an electrical one. This work consisted mainly of two specific aims. One was focused on conformational investigation of 5HT3R in its ligand-bound open conformation, using cryo-electron microscopy (cryo-SPA), in order to understand the gating mechanism upon ligand activation. The other one was to combine SPA with cryo-ET and STA to push the resolution limitation of conventional cryo-ET and STA workflows. In the end, three different cryo-EM conformations of membrane-embedded 5HT3R were resolved using cryo-SPA, two structures in resting closed forms, one C5-symmetric and one C1-asymmetric, and one serotonin-bound open form. These three structures presented a number of novel features related to the transition of the receptor to its ion-conductive state. Specifically, the serotonin-bound receptor shows asymmetric opening, which was speculated to occur via an intermediate asymmetric Apo state. In addition to the cryo-SPA work, application of cryo-ET and STA to the study of 5HT3R in native vesicles is described in this thesis. Additional work on methods development, focused on combining SPA and STA techniques, along with preliminary results on tobacco mosaic virus are also detailed and discussed. Moreover, previously unreported asymmetric arrangements of the subunits of the homopentameric 5HT3R around the pore axis were revealed. The asymmetric open state is stabilized by phospholipids inserted at the interface between subunits, at a site well-documented for the binding of allosteric pLGIC modulators. These results not only give structural support to a large body of functional data on the effects of lipids on the function of this receptor family, but also provide structural guidance for future studies in this field. Meanwhile, the SPA-STA combined methods developed during the course of this work have the potential to help resolve higher resolution tomography-based structures, which would benefit researchers seeking to do in-situ-based structural studies.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Yingyi ZhangORCiDGND
Place of publication:Frankfurt am Main
Referee:Inga HäneltORCiDGND, Mikhail KudryashevORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2020/10/30
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/09/24
Release Date:2020/10/30
Page Number:192
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht