Light induced local structure changes and dynamics of the photoreceptor PYP studied by thiocyanate as IR label

  • The small photoreceptor Photoactive Yellow Protein (PYP) enters a reversible photocycle after excitation with blue light. The intermediate states are formed on timescales ranging from femtoseconds to seconds including chromophore isomerization and protonation as well as large structural rearrangements. To obtain local dynamic information the vibrational label thiocyanate (SCN) can be inserted site-specifically at any desired position in the protein by cysteine mutation and cyanylation. The label's CN stretch vibration is highly sensitive to polarity, hydrogen bonding interactions and electric fields and is spectrally well separated from the overlapping protein absorptions. During the course of this thesis it was impressively demonstrated that the successful incorporation of the SCN label at selected positions in PYP provides a powerful tool to study structure changes and dynamics during the photocycle and enhance the local information that are obtained by infrared (IR) spectroscopic methods. Hence the SCN-labeled protein mutants were studied under equilibrium (steady-state) and non-equilibrium conditions. Examination of the SCN absorption by FTIR spectroscopy showed the influence of various local environments on the label for different locations in the dark state. The response of the label under illumination with blue light reveals information about structural changes in the signaling state. Additional information for both states were obtained by the vibrational lifetime of the CN vibration measured via ultrafast IR-pump-IR-probe experiments. This observable is particularly sensitive for solvent exposure of the label. Time-resolved IR spectroscopy proved to be an excellent method to follow the protein dynamics throughout most part of the photocycle on a hundreds of femtoseconds to milliseconds timescale. By close inspection of protein and chromophore dynamics in wildtype-PYP over nine decades in time, new insights into the changes leading to the proposed photocycle intermediates were obtained. The investigation of the SCN label allowed to follow the different transient structure changes with high local resolution. Depending on its position within the protein the response of the label provided additional information on the photocycle transitions. The insights that are obtained by the different observables in the steady-state and by the reaction of the SCN label to formation of the different intermediate states during the photocycle contribute to an improved understanding of local, light-induced structure changes in the photoreceptor PYP. This comprehensive study demonstrated the potential provided by the application of SCN as IR label for investigation of protein dynamics.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Larissa Blankenburg
Place of publication:Frankfurt am Main
Referee:Jens BredenbeckORCiD, Josef WachtveitlORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2020/12/07
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/12/07
Release Date:2020/12/08
Page Number:295
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht